博碩士論文 110328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.15.219.80
姓名 吳冠穎(Guan-Ying Wu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 石墨烯與氮化物於金屬多孔材之抗蝕特性與高溫質子交換膜燃料電池應用之研究
(Research on the Corrosion Resistance Characteristics of Graphene and Nitride Coatings on the Surface of Metal Porous Materials and Their Applications in High-Temperature Proton Exchange Membrane Fuel Cells)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 中文摘要
本研究使用金屬多孔材為質子交換膜燃料電池之流場,金屬多孔材具有高孔隙率、質量輕及導電性佳之特性,作為燃料電池流道與傳統流道相比不具遮蔽效應。由於高溫燃料電池運作時內部為酸性之環境,會侵蝕流道進而影響燃料電池壽命,為了防止磷酸水溶液腐蝕金屬多孔材而釋出金屬離子毒化膜電極組中的觸媒,需透過表面鍍層處理提升金屬多孔材之抗腐蝕性、導電性與疏水性等。本研究使用石墨烯、氮化鈦、氮化鋯及氮化鉻作為抗腐蝕鍍層,透過表面微觀結構、接觸角與腐蝕測試分析材料性質,並組成單電池分析性能表現。
腐蝕極化結果顯示石墨烯鍍層於模擬高溫燃料電池環境之抗蝕能力優於其它鍍層,石墨烯鍍層之多孔材比無鍍層之多孔材腐蝕電流大幅降低約58%,比常見氮化鈦鍍層降低約21%。且腐蝕量測前後之表面微結構型態分析表明,石墨烯鍍層顯示出更好的抗腐蝕穩定性。以石墨烯鍍層鎳多孔材組裝的PEMFC單電池,於180 oC下定電流在400 mA/cm2量測長時間之耐久性,石墨烯鍍層較無鍍層發泡材之燃料電池之電壓衰退率減少48.8%。藉由石墨烯之高電導率、機械強度等優勢,應用於高溫質子交換膜燃料電池,可提高電池之耐久性及穩定性。
摘要(英) Abstract
This study uses metal porous materials as the flow field for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). Metal porous materials exhibit characteristics such as high porosity, light weight, and excellent conductivity, which make them advantageous compared to traditional flow channels, as they can eliminate shielding effect. During the operation of HT-PEMFCs, the internal environment is acidic, which can corrode the metal flow channels and thereby affect the durability of the fuel cells. To prevent corrosion of metal porous materials by leakage phosphoric acid solutions from proton exchange membrane, it is necessary to enhance the corrosion resistance, conductivity, and hydrophobicity of the porous metal materials through surface coating treatments.
In this study, we used graphene, titanium nitride, zirconium nitride, and chromium nitride as anti-corrosion coatings. We analyzed the properties of these materials through surface morphology observation, contact angle measurements, and corrosion tests, and incorporated them into single cells to analyze their performance.
The corrosion polarization results show that the corrosion resistance of the graphene coating in a simulated HT-PEMFC environment is superior to other coatings. The corrosion current of the graphene-coated porous material is significantly reduced by approximately 58% compared to the pristine porous material and reduced by approximately 21% compared to the commonly used titanium nitride coating. Analysis of the microstructure before and after corrosion testing reveals that the graphene coating exhibits better corrosion resistance stability. In a HT-PEMFC single cell assembled with a graphene-coated nickel porous material, the fuel cell demonstrated long-term durability at a constant current of 400 mA/cm2 at 180 °C. The voltage decay rate of the fuel cell with the graphene coating was 48.8% less than that of the pristine metal porous material.
關鍵字(中) ★ 高溫質子交換膜燃料電池
★ 磷酸
★ 腐蝕
★ 石墨烯
★ 金屬多孔材
關鍵字(英)
論文目次 目錄
中文摘要 vi
Abstract vii
誌謝 ix
目錄 x
圖目錄 xiv
表目錄 xx
符號說明 xxii
第一章 緒論 1
1-1  前言 1
1-2  質子交換膜燃料電池 5
1-2-1 燃料電池種類 5
1-2-2 質子交換膜燃料電池工作原理 8
1-2-3 質子交換膜燃料電池之組成結構 12
1-2-4 燃料電池極化現象 20
1-3  鍍層製備原理及方式 27
1-3-1物理氣相沉積(Physical Vapor Deposition, PVD) 27
1-3-2化學氣象沉積(Chemical Vapor Deposition, CVD) 28
1-4  電化學交流阻抗基本原理 30
1-5  研究動機與方向 32
第二章 文獻回顧 35
2-1  金屬極板與多孔材流道分析 35
2-2  TiN鍍層分析 35
2-3  ZrN鍍層分析 36
2-4  CrN鍍層分析 37
2-5  Graphene鍍層分析 38
2-6  燃料電池之電化學交流阻抗分析 39
第三章 實驗方法與設備 42
3-1  實驗架構流程 42
3-2  鍍層之製備 43
3-3  表面結構分析 47
3-3-1 場發射掃描式電子顯微鏡 47
3-3-2 能量色散X射線譜(Energy-Dispersive X-Ray Spectroscopy, EDS) 48
3-3-3 拉曼光譜儀 49
3-4  接觸角量測 52
3-5  腐蝕極化量測 53
3-6  燃料電池之各元件介紹 55
3-6-1 膜電極組(Membrane and Electrode Assembly, MEA) 56
3-6-3 鎳多孔材 58
3-6-4 金屬流道與雙極板 60
3-6-5 端板 60
3-7  燃料電池測試系統 61
3-8  燃料電池極化現象 65
3-9  電化學交流阻抗分析儀 68
第四章 結果與討論 74
4-1  模擬於高溫型質子交換膜燃料電池腐蝕極化測試 74
4-2  接觸角量測 85
4-3  單電池性能測試 88
4-3-1 單電池性能量測 88
4-3-2 背壓之單電池性能測試 92
4-4  電化學交流阻抗頻譜測試 96
4-5  高溫型質子交換膜燃料電池耐久性測試 99
4-5-1 長時間耐久性測試 100
4-5-2 長時間耐久性電化學交流阻抗頻譜測試 103
4-6  多孔材表面鍍層分析 107
4-6-1 石墨烯鍍層品質檢測 107
4-6-2 石墨烯鍍層表面形貌 113
4-6-3 石墨烯鍍層元素分析 124
第五章 結論與未來規劃 130
5-1  結論 130
5-2  未來規劃 131
參考文獻 133
參考文獻 參考文獻
[1] https://www.iea.org/reports/world-energy-outlook-2022/executive-summary
[2] https://www.iea.org/reports/global-ev-outlook-2022
[3] https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=20210706093739.pdf
[4] https://www.iea.org/reports/global-energy-and-climate-model/announced-pledges-scenario-aps
[5] 2012年能源產業技術白皮書, 第一版 ed. 經濟部能源局, 2012.
[6] K. J. Chae, K. Y. Kim, M. J. Choi, E. Yang, X. Ren, M. Lee,” Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells,” Chem. Eng. J, Vol.254, pp.393-398, 2014.
[7] Y. Zhang, M. Yue, Y. Chen,” Proton Exchange Membrane Based on Sulfonated Polyimide for Fuel Cells: State-of-the-Art and Recent Developments,” Adv Mat Res, Vols.239-242, pp.3032-3038, 2011.
[8] Y. F. Zhai, H. M. Zhang, Y. Zhang, and D. M. Xing, “A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells,” Journal of Power Sources, vol. 169, pp. 259-264, 2007.
[9] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” Journal of Membrane Science, vol. 226, pp. 169-184, 2003.
[10] L. A. Zook, and J. Leddy, “Density and solubility of nafion: Recast, annealed, and commercial films,” Analytical Chemistry, vol. 68, pp. 3793-3796, 1996.
[11] H. Y. Jung, and J. W. Kim, “Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC),” International Journal of Hydrogen Energy, vol. 37, pp. 12580-12585, 2012.
[12] R. B. Sandor, “PBI (Polybenzimidazole): Synthesis, Properties and Applications,” High Performance Polymers, vol. 2, pp. 25-37, 1990.
[13] P. Staiti, M. Minutoli, and S. Hocevar, “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application,” Journal of Power Sources, Vol. 90, pp. 231-235, 2000.
[14] 張孜聖,金屬多孔材應用於質子交換膜燃電池內流道的研究,國立中央大學機械工程研究所碩士論文,民國九十九年。
[15] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[16] https://www.bendplating.com/different-types-pvd-coating/
[17] https://www.semicore.com/news/117-what-is-chemical-vapor-deposition-cvd
[18] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, S. K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Convers. Manag, Vol. 62, pp. 14-21, 2012.
[19] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, S. K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” Int. J. Hydrog, Vol 37, pp. 13060-13066,2012.
[20] C. J. Tseng, Y. J. Heush, C. J. Chiang, Y. H. Lee, K. R. Lee, “Application of metal foams to high temperature PEM fuel cells,” Int. J. Hydrog, Vol.41, pp. 16196-16204, 2016.
[21] M. Kim, C. Kim, Y. Sohn, “Application of Metal Foam as a Flow Field for PEM Fuel Cell Stack,” Fuel Cells (Weinh),Vol.18, pp.123-128, 2018.
[22] D. Zhang, L. Duan, L. Guo, Z. Wang, J. Zhao, W. H. Tuan, K. Niihara, “TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating,” Int. J. Hydrogen Energy, Vol. 36, pp. 9155-9161, 2011.
[23] C. K. Jin, M. G. Jung, C. G. Kang, “Fabrication of Aluminum Bipolar Plates by Semi-solid Forging Process and Performance Test of TiN Coated Aluminum Bipolar Plates,” Fuel Cells (Weinh),Vol.14, pp.551-560, 2014.
[24] T. Stein, E. E. Yair, “Proton exchange membrane (PEM) fuel cell bipolar plates prepared from a physical vapor deposition (PVD) titanium nitride (TiN) coated AISI416 stainless-steel,” SN Applied Sciences, 2019.
[25] J. Bi, J. Yang, X. Liu, D. Wang, Z. Yang, G. Liu, X. Wang, “Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells,” Int. J. Hydrogen Energy, Vol.46, pp. 1144-1154, 2021.
[26] W. Yoon, X. Huang, P. Fazzino, K. L. Reifsnider, M. A. Akkaoui, “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells,” J. Power Sources, Vol.179, pp.264-273, 2008.
[27] E. Dur, Ö. N. Cora, M. Koç, “Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates,” J. Power Sources, Vol.246, pp.788-799, 2014.
[28] J. Xu, S. Xu, P. Munroec, Z. H. Xie, “A ZrN nanocrystalline coating for polymer electrolyte membrane fuel cell metallic bipolar plates prepared by reactive sputter deposition,” RSC Adv, 2015.
[29] B. Wu, Y. Fu, J. Xu, G. Lin, M. Hou, ” Chromium nitride films on stainless steel as bipolar plate for proton exchange membrane fuel cell,” J. Power Sources, Vol.194, pp.976-980, 2009.
[30] L. Wang, D.O. Northwood, X. Nie, J. Housden, E. Spain, A. Leyland, A. Matthews, ” Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments,” J. Power Sources, Vol.195, pp.3814-3821, 2010.
[31] C. K. Jin, K. H. Lee, C. G. Kang, “Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process,” Int. J. Hydrogen Energy, Vol.40, pp.6681-6688, 2015.
[32] D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, K. I. Bolotin, “Graphene: Corrosion-Inhibiting Coating,” ACS Nano, 2012.
[33] N. W. Pu, G. N. Shi, Y. M. Liu, X. Sun, J. K. Chang, C. L. Sun, M. D. Ger, C. Y. Chen, P. C. Wang, Y. Y. Peng, C. H. Wu, S. Lawes, “Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates,” J. Power Sources, Vol. 282, pp. 248-256, 2015.
[34] Y. H. Lee, S. M. Li, C. J. Tseng, C. Y. Su, S. C. Lin, J. W. Jhuang, “Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, Vol.42, pp.22201-22207, 2017.
[35] M. Eikerling, A.A. Kornyshev, Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, J. Electroanal. Chem., Vol. 475, pp. 107-123, 1999.
[36] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance, J. Power Sources, Vol. 161, pp. 908-928, 2006.
[37] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes, Int. J. Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007.
[38] R. Chen, Y. Qin, Q. Du, J Peng, Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell, SAE International by University of British Columbia, Monday, September 24, 2018.
[39] A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nat. Mater, 2007.
[40] R. Muñoz, G. A. Cristina, “Review of CVD Synthesis of Graphene,” Chem. Vap. Deposition, 2013.
[41] https://www.teo.com.tw/newsdetail?article_id=334
[42] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, J. T. L. Thong, “Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy,” Small, 2010.
[43] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth,A. K. Geim, ”Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett, 2006.
[44] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep, Vol.473, pp.51-87, 2009.
[45] V. T. Nguyen H. D. Le, V. C. Nguyen, T. T. T. Ngo, D. Q. Le, X. N. Nguyen, N. M. Phan, “Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method,” Adv. Nat. Sci, 2013.
[46] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Lett, 2009.
[47] X. Dong, P. Wang, W. Fang, C. Y. Su, Y. H. Chen, L. J. Li, W. Huang, P. Chen, “Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure,” Carbon, Vol.49, pp.3672-3678, 2011.
[48] Hydrogen and Fuel Cell Technique Office. "DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components." U.S. DOE. https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymerelectrolyte-membrane-fuel-cell-components.
[49] Z. Rui, J. Liu, “Understanding of free radical scavengers used in highly durable proton exchange membranes,” Prog. Nat. Sci, Vol.30, pp.732-742, 2020.
[50] H. L. Nguyen, J. Han, X. L. Nguyen, S. Yu, Y. M. Goo, D. D. Le, ” Review of the Durability of Polymer Electrolyte Membrane Fuel Cell in Long-Term Operation: Main Influencing Parameters and Testing Protocols,” Energies, 2021.
[51] D. Zhu, H. Gao, X. Zhang, T. Yang, L. Li, G. Yin, X. Li, C. Nicklin, X. Gao, Z. Li, L. Yi, X. Li, “Real-time observation of graphene layer growth: Coupling of the interlayer spacing with thickness,” Carbon, Vol.94, pp.775-780, 2015.
[52] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, ” Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett, Vol.93, 2008.
指導教授 曾重仁 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明