博碩士論文 110328001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.131.13.194
姓名 劉家豪(Chia Hao Liu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 具奈米多層結構薄膜(Graphene oxide/chitosan)之自供電火災報警系統
(Self-powered Fire Alarm System with Layer-by-layer Graphene oxide/chitosan Nanocoating of Flame-retardant Nanofilms)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本文開發了一種自供電的火災報警系統,利用一種三明治結構狀的自供電火災感測器(SSFS)和一個簡單的系統來防止室內火災。SSFS 小巧、阻燃,可以輕鬆安裝在家具或門上。SSFS 使用以近場電紡織技術(NFES)製成的聚偏氟乙烯共三氟乙烯(PVDF-TrFE)壓電材料纖維和柔性印刷電路板(FPCB)構建的奈米發電機,通過收集運動能量產生電力。這種奈米發電機可以在幾分鐘內充滿電容,並產生最大6.47伏特的電壓輸出。SSFS 還在其頂部與底部通過逐層疊加組裝技術(LBL技術)製備兩塊阻燃三聚氰胺泡棉(MFs),泡棉表面被含有氧化石墨烯(GO)和幾丁聚醣的多層奈米塗層包覆。在高溫情況下,MFs 的電氣狀態從絕緣變為導電,約4秒後觸發火災報警燈。本研究的新穎之處在於,三明治狀的設計使得 SSFS 能夠應對各種火災報警情況,尤其是當感測器的頂部和底部都暴露在火焰中的情況下。使用這種三明治狀設計的火災感應器,可以減少火災警報的延遲時間。奈米發電機可以在初始觸發後保持警報工作22秒,足夠確保人們遠離火災。總而言之,這項研究通過一種輕便且自供電的火災報警系統,利用壓電奈米發電機(PENGs)收集運動能量,提供了一種創新的方法來降低建築火災風險。
摘要(英) We developed a self-powered fire alarm system that utilizes a sandwich-like self-powered fire sensor (SSFS) with the simple system to prevent room fires. The SSFS is small, flame-retardant, and can be easily installed on furniture or doors. The SSFS uses a nanogenerator constructed by poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) nanofibers which fabricated by NFES technology and a flexible printed circuit board (FPCB) to produce electrical power by harvesting motion energy. This nanogenerator can fully charge capacitors in a few minutes and produces a maximum voltage output of 6.47 V. The SSFS also features two flame-retardant melamine foams (MFs) coated with a graphene oxide (GO) and chitosan multilayer nanocoating which is fabricated by layer-by-layer technology (LBL technology). While encountering a high-temperature situation, the electrical state of MFs changes from insulated to conductive, triggering the fire alarm light in about 4 seconds. The sandwich-like design allows the SSFS to respond to a variety of fire alarm situations, especially in the case where both the top and bottom of the sensor are exposed to flame. It is such an innovative research to decrease the delay time of fire-warning by using this sandwich-like design fire sensor. The nanogenerator can keep the warning working for 22 seconds after the initial trigger, which produces enough time to ensure people stay clear of the fire. source. All in all, this study presents a novel approach to reducing the risk of building fires through a lightweight and self-powered fire alarm system that harvests motion energy using piezoelectric nanogenerators (PENGs).
關鍵字(中) ★ 近場電紡織
★ 聚偏二氟乙烯
★ 逐層氧化石墨烯/幾丁聚醣多層膜之三聚氰胺泡棉
★ 逐層疊加組裝技術
★ 三明治狀結構設計之自供電火災感測器
關鍵字(英) ★ Near-field electrospinning
★ Poly(vinylidenefluoride-co-trifluoroethylene)
★ Graphene oxide/ chitosan-modified melamine foam
★ Layer-by-layer technology (LBL technology)
★ Sandwich-like self-powered fire sensor (SSFS)
論文目次 目錄
摘要 I
Self-powered Fire Alarm System with Layer-by-layer Graphene oxide/chitosan Nanocoating of Flame-retardant Nanofilms III
Abstract III
致謝 IV
目錄 V
圖表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文大致架構 3
第二章 文獻回顧 5
2.1 壓電效應 5
2.1.1. 正壓電效應 (Direct Piezoelectric Effect) 6
2.1.2. 逆壓電效應 (Converse Piezoelectric Effect) 7
2.2 具壓電性質之材料 8
2.2.1. 壓電材料種類 8
2.2.2. 壓電材料操作模式 9
2.3 壓電聚合物 11
2.4 近場電紡織技術 13
2.4.1. 近場電紡織技術背景 13
2.4.2. 近電紡織技術原理 13
2.5 奈米發電機 16
2.5.1. 壓電奈米發電機(Piezoelectric Nanogenerator) 16
2.6 逐層疊加組裝技術 18
2.6.1. 沉浸式組裝 18
2.7氧化石墨烯與還原氧化石墨烯 20
2.8 幾丁聚醣 22
2.9聚二甲基矽氧烷(PDMS) 24
第三章 具奈米多層結構薄膜(Graphene oxide/chitosan)之自供電火災報警系統 25
3.1導論 26
3.2實驗方法及步驟 27
3.2.1 電紡絲製作方法及材料 27
3.2.2 逐層氧化石墨烯/幾丁聚醣之多層膜製備 28
3.2.3 量測設備及應用 29
3.3結果與討論 30
第四章 結論 47
第五章 未來展望 48
參考文獻 49
實 驗 儀 器 54


參考文獻 [1] S. Bairagi et al., "A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs", Int. J. Energy Res., 2020, 44(7), 5545-5563, https://doi.org/10.1002/er.5306
[2] Y. Pang, et al., "Multilayered Cylindrical Triboelectric Nanogenerator to Harvest Kinetic Energy of Tree Branches for Monitoring Environment Condition and Forest Fire," Adv. Funct. Mater., 2020, 30, 32, 2003528, https://doi.org/10.1002/adfm.202003598
[3] S. A. Han et al., "Point-Defect-Passivated MoS2 Nanosheet-Based High Performance Piezoelectric Nanogenerator," Adv. Funct. Mater., 2018, 30, 21, 1800342, https://doi.org/10.1002/adma.201800342
[4] S. R. Patil et al., "Triboelectric Nanogenerator Based on Biowaste Tribopositive Delonix Regia Flowers Powder," Energy Tech., 2022, 10(12), 2200876, https://doi.org/10.1002/ente.202200876
[5] S. Yan, Z. et al., "Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting," Int. J. Energy Res., 2021, 45(7), 11053-11064, https://doi.org/10.1002/er.6589
[6] L. Lu, et al.,"Flexible PVDF based piezoelectric nanogenerators." Nano Energy, 2020, 78, 105251, https://doi.org/10.1016/j.nanoen.2020.105251
[7] Y. K. Fuh et al., "A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride) nano/micro fibers," EXPRESS Polym. Lett, 2018, 12(2), 136–145, https://doi.org/10.3144/expresspolymlett.2018.12
[8] M. H. Syu, Y. J. Guan, W. C. Lo, Y. K. Fuh. "Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method." Nano Energy, 2020, 76, 105029, https://doi.org/10.1016/j.nanoen.2020.105029
[9] Z. Xiaofang et al., "PVDF-based and its Copolymer-Based Piezoelectric Composites: Preparation Methods and Applications." J. Electron. Mater, 2022, 51, 5528–5549, https://doi.org/10.1007/s11664-022-09825-y
[10] S. Katzir, "The discovery of the piezoelectric effect," in The beginnings of piezoelectricity: Springer, 2006, 15-64.
[11] K. Uchino, "Advanced piezoelectric materials: Science and technology. Woodhead Publishing," 2017.
[12] M. Birkholz, "Crystal-field induced dipoles in heteropolar crystals II: Physical significance," Zeitschrift für Physik B Condensed Matter, 96(3), 333-340, 1995, https://doi.org/10.1007/BF01313055
[13] C. Covaci and A. Gontean, "Piezoelectric energy harvesting solutions: A review," Sensors, 2020, 20(12), 3512, https://doi.org/10.3390/s20123512
[14] X. Hu et al., "Increased effective piezoelectric response of structurally modulated P (VDF-TrFE) film devices for effective energy harvesters," Materials & Design, 2020, 192, 108700. https://doi.org/10.1016/j.matdes.2020.108700
[15] G. Zhu et al., "Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification," Nano letters, 2014, 14(6), 3208-3213, https://doi.org/10.1021/nl5005652
[16] N. Soin, S. Anand, and T. Shah, "Energy harvesting and storage textiles," in Handbook of Technical Textiles: Elsevier, 2016, 357-396. https://doi.org/10.1016/B978-1-78242-465-9.00012-4
[17] S. Ebnesajjad, "Introduction to fluoropolymers," in Applied Plastics Engineering Handbook: Elsevier, 2017, 55-71.
[18] D. W. Grainger, "Fluorinated Biomaterials," in Biomaterials Science: Elsevier, 2020, 125-138. https://doi.org/10.1016/j.jconrel.2021.09.001.
[19] Q. Zhang et al., "Poly (vinylidene fluoride)(PVDF) and its copolymers," Encyclopedia of smart materials, 2002.
[20] N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnol. Adv., 28(3), 325-347, 2010.
[21] G. I. Taylor, "Electrically driven jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 313(1515), 453-475.
[22] X.-X. He et al., "Near-Field Electrospinning: Progress and Applications," J. Phys. Chem. C., 2017, 121(16), 8663–8678, https://doi.org/10.1021/acs.jpcc.6b12783
[23] F.-R. Fan et al., "Flexible triboelectric generator," Nano energy, 2012. 1(2), 328-334, https://doi.org/10.1016/j.nanoen.2012.01.004
[24] R. Yang et al., "Power generation with laterally packaged piezoelectric fine wires," Nature nanotechnology, 2009. 4(1), 4-39, https://doi.org/10.1038/nnano.2008.314.
[25] J. J. Richardson et al., "Technology-driven layer-by-layer assembly of nanofilms," Science, 2015, 348(6233), 2491, https://doi.org/10.1126/science.aaa2491
[26] S. Sunny et al.,"Lubricant- Infused Nanoparticulate Coatings Assembled by Layer- by- Layer Deposition," Adv. Funct. Mater., 2014, 24(42), 6658-6667, https://doi.org/10.1002/adfm.201401289
[27] A. T. Dideiken, A. Y. Vul′. "Graphene Oxide and Derivatives: The Place in Graphene Family," Sec. Condensed Matter Physics, 2018, 6(149), https://doi.org/10.3389/fphy.2018.00149
[28] H. Jia et al.,"Integrating Ultra-Thermal-Sensitive Fluids into Elastomers for Multifunctional Flexible Sensors," Adv. Elect. Mater., 2015, 1(3), 1500029, https://doi.org/10.1002/aelm.201500029
[29] H. Qin et al., "Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide," Sec. Polym. Chem., 2018, 6, 565, https://doi.org/10.3389/fchem.2018.00565
[30] L. Dong et al., "A large-area, fexible, and fame-retardant graphene paper." Adv. Funct. Mater., 2016, 26(9), 1470–1476, https://doi.org/10.1002/adfm.201504470
[31] H. Xie et al., "A sandwich-like flame retardant nanocoating for supersensitive fire-warning," Chem. Eng. J., 2020, 382, 122929, https://doi.org/10.1016/j. cej.2019.122929
[32] C. Y. Shie et al., " Flexible and Self-Powered Thermal Sensor Based on Graphene-Modified Intumescent Flame-Retardant Coating with Hybridized Nanogenerators." ACS Appl. Nano Mater. 2023, 6(4), 2429–2437, https://doi.org/10.1021/acsanm.2c04700
[33] K-Y Guo et al., "Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response", Compos. B. Eng., 2020, 193(15), 108017, https://doi.org/10.1016/j.compositesb.2020.108017
[34] C-F Cao et al., "Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives," J Mater Sci Technol., 2021, 85(20), 194-204, https://doi.org/10.1016/j.jmst.2020.12.073
[35] H Xu et al., "Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning," J. Hazard. Mater., 2019, 363(5), 286-294, https://doi.org/10.1016/j.jhazmat.2018.09.082
[36] H. Kjellgren et al., "Barrier and surface properties of chitosan- coated greaseproof paper." Carbohydr. Polym., 2006, 65, 453–460, https://doi.org/10.1016/j.carbpol.2006.02.005
[37] B.Wang, et al., "Multifunctional mxene/chitosan-coated cotton fabric for intelligent fire protection," ACS Appl. Mater. Interfaces, 2021, 13(19), 23020–23029, https://doi.org/10.1021/acsami.1c05222
[38] Q. Li et al., "Applications and Properties of Chitosan," Journal of Bioactive and Compatible Polymers. 1992, 7(4), 370-397, https://doi.org/10.1177/088391159200700406
[39] A. Victor, J. Ribeiro, and F. F. Araújo, "Study of PDMS characterization and its applications in biomedicine: A review," Journal of Mechanical Engineering and Biomechanics, 2019. 4(1), 1-9, https://doi.org/10.24243/JMEB/4.1.163
[40] Y. H. Lin, S. W. Kang, T. Y. Wu. "Fabrication of polydimethylsiloxane (PDMS) pulsating heat pipe," Applied Thermal Engineering, 2009, 29(2-3), 573-580, https://doi.org/10.1016/j.applthermaleng.2008.03.028
[41] J. R. Vélez-Cordero, J. Hernandez-Cordero. "Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers. International Journal of Thermal Sciences," 2015, 96, 12-22, https://doi.org/10.1016/j.ijthermalsci.2015.04.009
[42] Y. Bin et al., "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density." Nano Energy, 2018, 48, 464-470, https://doi.org/10.1016/j.nanoen.2018.03.064
[43] Q. Pan et al., "Accelerated thermal decomposition of graphene oxide films in air via in situ X-ray diffraction analysis." J. Phys. Chem. C., 2016, 120(27), 4984-14990, https://doi.org/10.1021/acs.jpcc.6b05031
[44] J. Wang, C. C. Chen, C. Y. Shie , T. T. Li , Y. K. Fuh. "A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication." Sensors and Actuators A: Physical, 2022, 342, 113622, https://doi.org/10.1016/j.sna.2022.113622
[45] Mi. H. Xu, Ch. Y. Shie, Ch. Ch. Chen, Y. K. Kwan, W. Ch. Lo, H. F. Chen, Y. H. Lin, Yiin Kuen Fuh, "All directional nanogenerators (NGs) with a highly flexible and near field electrospun concentrically aligned nano/micro P(VDF-TrFE) fibers," Microsyst., 2022, 28, 2549–2560, https://doi.org/10.1007/s00542-022-05387-5
[46] T. H. Lee, C. Y. Chen, C. Y. Tsai,Y. K. Fuh, "Near-field electrospun piezoelectric fibers as sound-sensing elements." Polymers, 2018, 10(7), 692, https://doi.org/10.3390/polym10070692
[47] Y. K. Fuh, B. S. Wang. "Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition." Nano Energy, 2016, 30, 677-683, https://doi.org/10.1016/j.nanoen.2016.10.061
[48] B. Azimi et al.,"Electrospinning piezoelectric fibers for biocompatible devices," Adv. Healthc. Mater.., 2019, 1901287, https://doi.org/10.1002/adhm.201901287
[49] S. Niu et al., "Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage." T-ED, 2014, 62(2), 641 - 647, https://doi.org/10.1109/TED.2014.2377728
[50] V. Babrauskas. "Ignition of Wood: A Review of the State of the Art," J. Fire Prot. Eng., 2015, 12(3), 163-189, https://doi.org/10.1177/10423910260620482
[51] M. Mao et al., "Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning," J. Chem. Eng., 2022, 427, 131615, https://doi.org/10.1016/j.cej.2021.131615
指導教授 利定東 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明