博碩士論文 108328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.222.22.244
姓名 徐逸鴻(Yi-Hung Hsu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 波導型平面聚光器於太陽能系統之容忍角增益研究
(Improve acceptance angle of planar waveguide concentrator with solar system)
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 高分子光柵應用於太陽光分光元件
★ 利用色差分光之太陽能分光系統★ 有機發光二極體光熱電特性整合模擬之研究
★ 隨機奈米粒子模型應用於OLED 出光增益之研究★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究
★ 陰影疊紋式力-位移量測技術之研究★ 繞射分波元件於混合型太陽能系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 本論文設計一聚光系統,其波導板底部為設計之 V 型構造,並於上方搭載透鏡陣列,並將太陽能電池裝置於波導板左右兩側,藉由透鏡將入射光會聚至底部後,再由底部 V 型溝槽鍍上鋁膜後反射至太陽能電池,利用光伏效應將光能轉換為電能。利用光學模擬軟體 LightTools 進行設計模擬,最初進行模擬時,僅計算模型幾何之光學效率為 87.5%,系統容忍角為±13°。接著,考量各項條件情況下(穿透率、反射率、太陽光譜、太陽能電池頻譜等),其光學效率為 37.1%、系統容忍角為±11°。接著,將所設計之模型以CNC製程製作出成品並進行加工後,利用太陽能電池分析儀及
太陽光模擬器進行光學效率之實際量測,測得實際模型之光學效率為 22.6%、系統容忍角為±15°。最後,將實驗結果與模擬結果比較分析,探討效率損失之原因。
摘要(英) This thesis presents the design of a concentrator system, which features a V-grooves structure at the bottom of the waveguide. An lens array is installed above it, and solar cell are placed on the left and right sides of the waveguide. The incident light is focused at the bottom through the lenses, and then reflected onto the solar cell by aluminum coating on the V-grooves at the bottom. The light energy is converted into electrical energy using the photovoltaic effect.
The design was simulated using the optical simulation software LightTools. Firstly, only calculate the geometry of the design. Simulation results show that its average optical efficiency achieve 87.5%, with a system acceptance angle of ±13°. Then, consider various conditions such as transmittance, reflectance, solar spectrum, and solar cell spectrum. The average optical efficiency achieve 37.1%, with a system acceptance angle of ±11°. Next, the designed model was fabricated using CNC machining and processed accordingly. The reality optical efficiency of the fabricated model was measured using a Solar Module Analyzer and Solar Simulator. The measured average optical efficiency of the fabricated model decrease to 22.6%, with a system acceptance angle of ±15°.
Finally, compare the measurement results with simulation results and analyze them. Investigate the reason of the efficiency loss.
關鍵字(中) ★ 容忍角
★ 透鏡陣列
關鍵字(英) ★ acceptance angle
★ lens array
★ concentrator
★ V-groove
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章、緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1 折射式 4
1-2-2 反射式 4
1-2-3 混合型 6
1-2-4 螢光型 8
1-2-5 波導型 8
1-3 研究動機與目的 11
1-4 研究方法與流程 12
1-5 論文架構 13
第二章、基礎理論與原理 14
2-1 幾何光學理論 14
(1) 光線直線傳播 14
(2) 反射定律 14
(3) 折射定律 15
2-2 非成像光學(Non-imaging optics) 17
2-3 菲涅爾損失 18
2-4 造鏡者公式(Lens maker’s equation) 19
2-5 非球面透鏡 20
2-6 太陽能電池 21
2-7 線性菲涅爾反射式太陽聚光器 24
2-8 小結 26
第三章、設計與模擬 27
3-1 設計理念 27
3-2 設計流程 30
3-3 非球面透鏡設計 31
3-4 底部V型溝槽斜面設計 32
3-4-1 直接反射型 33
3-4-2 二次反射型 35
3-5 聚光系統之光學模擬 39
3-6 聚光系統之容忍角分析 42
3-7 小結 44
第四章、實驗方法與結果討論 45
4-1 實驗設備 45
4-2 實驗架設 49
4-2-1 模型對位 49
4-2-2 折射液選用 51
4-2-3 太陽光模擬器 52
4-3 實驗結果 53
4-3-1 太陽能電池量測 53
4-3-2 側聚光系統實驗量測 56
4-4 結果與討論 59
4-4-1 考慮實際影響之因素 59
4-4-2 誤差分析 62
4-4-3 容忍角誤差 65
4-5 小結 65
第五章、結論與未來展望 67
5-1 結論 67
5-2 未來展望 68
參考文獻 69
參考文獻 [1] "發電量佔比." 台灣電力公司. https://www.taipower.com.tw/tc/Chart.aspx?mid=194
[2] M. A. Green, "Photovoltaic principles," Physica E: Low-dimensional Systems and Nanostructures, vol. 14, no. 1-2, pp. 11-17, 2002.
[3] H. Müller-Steinhagen and F. Trieb, "Concentrating solar power," A review of the technology. Ingenia Inform QR Acad Eng, vol. 18, pp. 43-50, 2004.
[4] S. N. Bureau. "Unveiling the Solar Water Heating System Technology." SAUR ENERGY. https://www.saurenergy.com/solar-energy-blog/unveiling-the-solar-water-heating-system-technology
[5] "CIS Tower." https://en.wikipedia.org/wiki/CIS_Tower
[6] H. Apostoleris, M. Stefancich, and M. Chiesa, "Tracking-integrated systems for concentrating photovoltaics," Nature Energy, vol. 1, no. 4, pp. 1-8, 2016.
[7] P. Xie, H. Lin, Y. Liu, and B. Li, "Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers," Optics express, vol. 22, no. 106, pp. A1389-A1398, 2014.
[8] D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and sustainable energy reviews, vol. 90, pp. 957-968, 2018.
[9] P. Benítez et al., "High performance Fresnel-based photovoltaic concentrator," Optics express, vol. 18, no. 101, pp. A25-A40, 2010.
[10] W. Xie, Y. Dai, R. Wang, and K. Sumathy, "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, vol. 15, no. 6, pp. 2588-2606, 2011.
[11] R. Winston and H. Hinterberger, "Principles of cylindrical concentrators for solar energy," Solar Energy, vol. 17, no. 4, pp. 255-258, 1975.
[12] K.-K. Chong et al., "Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator," in AIP conference proceedings, 2015, vol. 1657, no. 1: AIP Publishing.
[13] X. Ning, R. Winston, and J. O’Gallagher, "Dielectric totally internally reflecting concentrators," Applied optics, vol. 26, no. 2, pp. 300-305, 1987.
[14] J. C. Miñano, J. C. González, and P. Benítez, "A high-gain, compact, nonimaging concentrator: RXI," Applied Optics, vol. 34, no. 34, pp. 7850-7856, 1995.
[15] L. H. Slooff et al., "A luminescent solar concentrator with 7.1% power conversion efficiency," physica status solidi (RRL)–Rapid Research Letters, vol. 2, no. 6, pp. 257-259, 2008.
[16] J. H. Karp, E. J. Tremblay, and J. E. Ford, "Planar micro-optic solar concentrator," Optics express, vol. 18, no. 2, pp. 1122-1133, 2010.
[17] S.-Y. Hsiao, "側聚光型太陽能電池系統之容忍角增益研究," National Central University, 2017.
[18] E. Hecht, Optics 4ed. Addison-Wesley, 2001.
[19] "Sagitta (optics)." https://en.wikipedia.org/wiki/Sagitta_(optics)
[20] "Aspherical Lens." https://www.laserfocusworld.com/directory/finished-optics-coatings-components/lenses/blog/14223236/lacroix-precision-optics-what-is-an-aspherical-lens
[21] "圓錐係數對應之圖形." https://kknews.cc/zh-tw/news/v6q6o2a.html
[22] 李朱育、李敏鴻、李勝偉、柯文政、段生振、陳念波, 圖解:光電半導體元件. 五南出版.
[23] B. Negi, T. Kandpal, and S. Mathur, "Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber," Solar & wind technology, vol. 7, no. 4, pp. 379-392, 1990.
[24] "AM1.5G spectrum." https://www2.pvlighthouse.com.au/resources/optics/spectrum%20library/spectrum%20library.aspx
[25] "PEC-L11 Specifications." http://www.optical-relation.com/PEC-L11%20Specifications%20PDF.pdf
[26] "Solar simulator catalog." http://hologenix.com/sites/default/files/PDFs/SolarSimulatorCatalog.pdf
[27] "High sensitivity thermal laser sensors." [Online]. Available: https://www.ophiropt.com/laser--measurement/cn/laser-power-energy-meters/products/Laser-Thermal-Power-Sensors/High-Sensitivity-Thermal-Laser-Sensors/3A-P-FS-12.
[28] "PV Analyzer Specifications." https://www.prova.com.tw/img/download/200A-Data%20Sheet-2015.pdf
[29] "refractive index liquids." https://www.cargille.com/refractive-index-liquids/
指導教授 韋安琪(An-Chi Wei) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明