博碩士論文 110322044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.145.173.67
姓名 張靖民(Jing-Min Zhang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 隧道開挖方向對裂隙岩體穩定性之影響
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在裂隙岩體中進行岩石工程,如隧道、岩坡和基礎建設,不連續面的存在是影響工程行為的重要因素,不僅與不連續面的方位相關,還與隧道開挖方向、岩坡傾向以及基礎配置方向等因素有密切關聯。儘管先前的工程師早已確認岩石工程中存在異向性行為,並廣泛應用經驗法則於實際工程中,但由於岩石工程中異向性行為的複雜性,這一問題長期以來一直缺乏嚴謹且全面的物理模型試驗、解析分析或數值分析的結果,以驗證經驗法則的正確性。
本文旨在探討岩石隧道異向性行為,驗證Rock Mass Rating及Rock Structure Rating在探討方位評分調整的合理性外,更著重於三維合成岩體隧道模型數值分析之數據處理與詮釋。二維數值模擬工具無法探討不同開挖方向的效應,故本文利用三維數值模擬程式PFC3D及RS3探討隧道開挖方向對裂隙岩體穩定性之影響。本文利用Kirsch equations做隧道開挖的驗證,驗證結果均符合,PFC3D與RS3兩者均適合用來模擬裂隙岩體隧道開挖。利用PFC3D生成鍵結顆粒模型(Bonded Particle Model, BPM)配合離散裂隙網絡(Discrete Fracture Network, DFN)建構具有一組不連續面之合成岩體隧道模型,傾角(?j)變因為:?j=0˚、15˚、30˚、45˚、60˚、75˚及90˚等七種,裂隙間距為2m之離散裂隙網絡,針對三種隧道開挖情境進行模擬:情境一(γ=90˚):裂隙走向平行開挖方向;情境二(γ=0˚):裂隙走向垂直開挖方向且傾向與開挖方向相同;情境三(γ=180˚):裂隙走向垂直開挖方向且傾向與開挖方向相反。RS3也進行與上述相同變因及情境之模擬。透過數值模擬結果,探討各變因下隧道開挖後穩定性的影響,並透過位移場、徑向位移、應變不變量、應變能及位能等量化指標描述隧道的穩定性,藉由模擬結果與前人文獻相比,統整出一套裂隙對於開挖方向的評分調整系統,以及歸納出各開挖情況下隧道挖掘後變形形式及分布。
數值結果分析顯示:(1)低傾角裂隙岩體β_j=0˚~20˚時,三種開挖情境皆有相同的結果,代表隧道穩定性與隧道開挖方向無關,可佐證(Bieniawski,1979)所提出之方位評分調整合理性。(2)理論上不連續面傾角β_j=90˚之岩體,在γ=0˚及γ=180˚時穩定性應該一致。然而,RSR或RMR在開挖γ=0˚、180˚的評價卻分別為「極有利」及「尚可」,存在悖離理論的缺陷。本文在γ=90˚、180˚下,β_j=45˚與β_j=90˚之分析出之數據結果差距甚大,隧道行為截然不同,不宜歸納為同一傾角分群。因此針對傾角分群由原本的三群加以細分為六群,可獲致更細緻的評分且可解決RSR及RMR悖離理論的缺陷。(3)利用PFC3D模擬結果輸出之數據,以不同的採計範圍,分別針對應變不變量、徑向位移、應變能、位能等建立指標,與Bieniawski(1979)不連續面方位評分調整進行最佳化擬合。徑向位移及位能與Bieniawski(1979)吻合度最高;在18種組合中,有10種完全相同。(4)高傾角(β_j=60˚~90˚)之岩盤,當開挖方向與不連續面走向平行時(γ=90˚),本文分別以有限元素法RS3及離散元素法PFC3D分析結果提出之方位評分調整與Bieniawski(1979)差異最大。彙整前人研究成果,可分為三類:有限元素法(含本文RS3分析結果)、離散元素法及模型試驗。其中有限元素法之結果與Bieniawski(1979)相似,離散元素法及模型試驗結果與本文結果相似。(5)PFC3D及RS3開挖模擬的結果顯示,RS3隧道周圍位移量遠小於PFC3D的位移量。尤其在開挖方向γ=0˚及γ=180˚時,RS3模擬所得之隧道周圍位移量極小,只有在γ=90˚、β_j=60˚~90˚位移量略大,其位移量約為PFC3D的十分之一至六十分之一。究其原因可能在於RS3是基於連續體的有限元素法進行分析,在分析非線性、不連續性或離散性問題時,較無法精確呈現變形結果。(6)探討隧道穩定性時,數據採計範圍亦至關重要,本文分別以固定的採計半徑為隧道壁外rm=1r及不同的採計長度(即未支撐段)lx=2m、6m、18m,探討在不同採計範圍下之徑向位移的特性及適用性。結果顯示採計範圍lx=18m較能完整地代表隧道開挖穩定性。(7)相對於徑向位移及位能,應變不變量、應變偏量不變量及應變能等,僅適用於小變位,當濾除大位移數據,等同忽略坍落至隧道洞內之岩塊,未必適合作為隧道穩定性指標。然而,這些不同的指標在數學上具有明確的定義,部分具有物理意義,例如:第一應變不變量(I1)代表隧道周圍岩體的體積應變;第二應變不變量(I2)及第二應變偏量不變量(J2)相當適合用以描述因不連續面滑動發生的剪切破壞;應變能(U0)代表應力及應變之積,則適合作為標記破壞位置之用。
摘要(英) In the engineering of rock masses, such as tunnels, rock slopes, and foundation construction within fractured rock formations, discontinuity is a crucial factor influencing the behavior of the engineering structures. This influence is not only related to the orientation of the discontinuities but also closely tied to factors such as the excavation direction of tunnels, the slope of rock, and the orientation of foundation configurations. Despite the acknowledgment by previous engineers of the anisotropic behavior in rock engineering and the widespread application of empirical rules in practical projects, the lack of rigorous and comprehensive results from physical model tests, analytical analyses, or numerical analyses regarding anisotropic behavior in rock engineering has led to a long-standing deficiency in verifying the accuracy of empirical rules.
This paper aims to explore the anisotropic behavior of rock tunnels, focusing not only on validating the rationality of adjusting orientation scores in Rock Mass Rating (RMR) and Rock Structure Rating (RSR) but also emphasizing the data processing and interpretation of numerical analyses of three-dimensional synthetic rock mass tunnel models. Two-dimensional numerical simulation tools can not address the effects of different excavation directions, so this paper utilizes three-dimensional numerical simulation programs PFC3D and RS3 to investigate the influence of tunnel excavation direction on the stability of fractured rock masses. The verification of tunnel excavation using the Kirsch equations confirms that both PFC3D and RS3 are suitable for simulating tunnel excavation in fractured rock masses. A Bonded Particle Model (BPM) combined with a Discrete Fracture Network (DFN) is generated using PFC3D to construct synthetic rock mass tunnel models with a set of discontinuities. The dip angle (?j) variables include: ?j=0˚, 15˚, 30˚, 45˚, 60˚, 75˚, and 90˚. Three tunnel excavation scenarios are simulated: Scenario 1 (γ=90˚): Strike parallel to the excavation direction; Scenario 2 (γ=0˚): Strike perpendicular to the tunnel axis and direction of drive with dip; Scenario 3 (γ=180˚): Strike perpendicular to the tunnel axis and direction of drive against dip. RS3 also performs simulations with the same variables and scenarios. Through numerical simulation results, the paper investigates the influence of various variables on tunnel stability, and quantitative indicators such as displacement fields, radial displacements, strain invariants, strain energy, and potential energy are used to describe tunnel stability. By comparing simulation results with existing literature, the paper consolidates a scoring adjustment system for discontinuities concerning excavation direction and summarizes deformation patterns and distributions after tunnel excavation under various conditions.
The analysis of numerical results reveals that: (1) Displacement values around tunnels in RS3 are much smaller than those in PFC3D, especially when γ=0˚ and 180˚. RS3 shows extremely small displacement values around tunnels, with only slightly larger values when γ=90˚ and ?j=60˚ to 90˚, approximately 1/10 to 1/60 of the displacement values in PFC3D. (2) Theoretically, rock masses with a dip angle βj=90˚ should exhibit consistent stability when excavated in γ=0˚ and γ=180˚. However, RSR and RMR evaluations for excavations in γ=0˚ and 180˚ are "very favorable" and "fair," respectively, deviating from theoretical expectations. The analysis results for βj=45˚ and βj=90˚ in γ=90˚ and 180˚ show significant differences, indicating distinct tunnel behaviors, and suggesting that these should not be grouped under the same dip angle. Therefore, the dip angle grouping is refined from three groups to six groups, providing a more detailed scoring system and addressing the discrepancies in RSR and RMR evaluations. (3) Using strain invariants, strain deviator invariants, strain energy, radial displacement, and potential energy, the paper performs optimization fitting with RMR discontinuity orientation score adjustments. Radial displacement and potential energy show the highest correlation with RMR; out of 18 combinations, 10 are identical, while the remaining 4 differ by one grade and 4 differ by two to three grades. Strain invariants, strain deviator invariants, and strain energy are based on the assumption of small strains and must filter out particles with large displacements, making them unsuitable as indicators for tunnel stability. (4) Rock masses with high dip angles (βj=60˚~90˚), when excavated parallel to the discontinuity orientation (γ=90˚), exhibit significant differences in orientation score adjustments proposed by RS3 (finite element method) and PFC3D (discrete element method) compared to RMR. Reviewing previous research results, three main approaches are identified: finite element methods, discrete element methods, and model tests. Finite element methods (including RS3 in this paper) show similarities to RMR, while discrete element methods and model tests show similarities to PFC3D results. Finite element methods based on continuum mechanics may underestimate deformation significantly due to their inability to simulate large displacements associated with discontinuity sliding. This indicates that different numerical methods can lead to variations in analysis results. (5) Relative to radial displacement and potential energy, strain invariants, strain deviator invariants, and strain energy are not suitable as indicators of tunnel stability. However, each of these invariants and strain energy has different physical meanings. The first strain invariant (I1) represents volume strain in the rock mass around the tunnel; the second strain invariant (I2) and the second strain deviator invariant (J2) are suitable for describing shear failure due to discontinuity sliding; strain energy (U0) represents the product of stress and strain and is useful for marking the location of failure.(6) The investigation of tunnel stability requires careful consideration of data collection range, and this study adopts radial displacement measurements taken one and a half times the tunnel radius outward. The suitability of this approach is examined at distances of 2m, 6m, and 18m from the excavation face. When collecting data 2m ahead of the excavation face, the region near the excavation face exhibits greater stability when γ=90˚, while the region with lower inclination angles (γ=180˚) appears less stable. As the data collection range increases, the results show instability for γ=90˚, while the radial displacement for γ=0˚ and 180˚ tends to converge. This convergence suggests that the stability of these two angles should be similar after the tunnel is completely penetrated. Therefore, the study recommends analyzing the data up to half of the model′s excavation as a more suitable approach to distinguish and examine the stability behavior for γ=0˚ and 180˚.
關鍵字(中) ★ 隧道開挖方向
★ 徑向位移
★ 應變不變量
★ 裂隙方位評分調整
關鍵字(英) ★ tunnel excavation direction
★ radial displacement
★ strain invariant
★ adjustment for joint orientation
論文目次 摘要 v
Abstract viii
致謝 xii
目錄 xiii
圖目錄 xv
表目錄 xx
符號說明 xxii
第一章 緒論 1
51.1 研究動機 1
61.2 研究方法與目的 5
71.3 研究架構 6
第二章 文獻回顧 7
82.1 開挖方向之定義 7
92.2 岩體分類法介紹 8
102.3 開挖方向與隧道開挖力學行為 9
112.4 PFC3D及RS3合成岩體 22
122.5 應變不變量破壞理論(SIFT) 35
132.6 應變能 40
142.7 位能 41
第三章 合成岩體隧道開挖模型建構 42
153.1 研究流程 42
163.2 岩石試驗及參數設定 44
173.3 合成岩體模型建構 49
183.4 開挖方向模型 58
193.5 岩體隧道開挖模型驗證 60
第四章 數據分析方法及驗證 64
204.1 數據採計範圍 65
214.2 數據解析方法 67
224.3 計算流程驗證 76
第五章 隧道開挖結果詮釋 84
235.1 開挖引致之位移 84
245.2 徑向位移 87
255.3 應變不變量 99
265.4 應變能 118
275.5 位能 124
285.6 與Bieniawski方位評分調整比較 130
295.7 γ=90˚不同分析方法比較 141
第六章 結論及建議 146
306.1 結論 146
316.2 建議 149
參考文獻 150
附錄 153
參考文獻 1. 田永銘、黃致維、黃森暉、裴文彬,(2021)「裂隙岩體隧道、岩坡與基礎之異向性工程行為」,科技部專題研究計畫期中進度報告,MOST 109-2221-E-008-015。
2. 任光正(2022),「裂隙岩體之基礎承載力異向性與變異性」,碩士論文,國立中央大學土木工程學系,中壢。
3. 李忠祐(2020),「運用數位影像法及羅吉斯迴歸探討鹼-骨材反應引致之裂縫行為」,碩士論文,國立中央大學土木工程學系,中壢。
4. 李惟誠(2018),「以數位影像法量測鹼-骨材反應引致之應變場與裂縫發展之關係」,碩士論文,國立中央大學土木工程學系,中壢。
5. 郭明傳(2005),「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程學系,中壢。
6. 黃致維(2020),「利用合成岩體模擬橫向等向性岩體之基礎承載力」,碩士論文,國立國立中央大學土木工程學系,桃園。
7. 黃森暉(2022),「從順向坡至逆向坡之崩塌行為模擬」,碩士論文,國立中央大學土木工程學系,中壢。
8. 裴文斌(2022),「Effect of Excavation Direction on Stability of Tunnels in Transversely Isotropic Rock Mass」,博士論文,國立中央大學土木工程學系,中壢。
9. 劉家豪(2019),「橫向等向性合成岩體之力學行為及其變異性」,碩士論文,國立中央大學土木工程學系,中壢。
10. 潘國樑(2007),「工程地質學導論」,科技圖書,第224頁。
11. 盧育辰(2009),「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程學系,中壢。
12. Arai, N., and Chigira, M. (2019) “Distribution of gravitational slope deformation and deep-seated landslides controlled by thrust faults in the Shimanto accretionary complex,” Engineering Geology, Vol.260
13. Brown, E.T. (1981) “Rock Characterization Testing and monitoring: ISRM suggested methods,” Oxford, UK, pp. 211.
14. Bieniawski, Z.T. (1979) “The Geomechanics Classification in Rock Engineering Application,” Proceeding 4th International Congress on Rock Mechanics, Montreux, pp. 41-48.
15. Cai, H., Miyano, Y., and Nakada, M. (2009) “Long-term Open-hole Compression Strength of CFRP laminates based on Strain Invariant Failure Theory,” Journal of Thermoplastic Composite Materials, Vol. 22.
16. Cundall, P. A., and Strack, O. D. (1979) “A discrete numerical model for granular assemblies,” Géotechnique, Vol. 29, No. 1, pp. 47-65.
17. Damjanac, B., and Cundall, P.A. (2016) “Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs,” Computers and Geotechnics, Vol. 71, pp. 283-294.
18. Deere, D.U., and Miller, R.P. (1966) “Engineering classification and index properties for intact rock,” Air Force Laboratory Technical Report, No. AFNL-TR-65-116, Albuquerque, NM.
19. Dershowitz, W. and Herda, H. (1992) “Interpretation of fracture spacing and intensity,” in JR Tillerson and Wawersik, Proceedings of the 33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam, pp. 757–766.
20. Einstein, H.H., and Baecher, G.B. (1983) “Probabilistic and statistical methods in engineering geology,” Rock Mechanics and Rock Engineering, Vol. 16, No. 1, pp. 39-72.
21. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M. (2010) “Estimating geometrical and mechanical rev based on synthetic rock mass models at Brunswick Mine,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 6, pp. 915–926.
22. Fang, Q., Wang, G., Yu, F., Du, J. (2021) “Analytical algorithm for longitudinal deformation profile of a deep tunnel,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 13, pp. 845-854.
23. Gosse, J. and Christensen, S. (2001) “Strain Invariant Failure Criteria for Polymers in Composite Materials,” Collection of technical papers, 19th AIAA Applied Aerodynamics Conference and Exhibit, Vol. 1184.
24. Goyal, V., Garcia, C., Irizarry, E. (2016) “Micro Damage Initiation of Isotropic and Composites Structures Using Strain Invariant Failure Theory,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
25. Harman, A., Risborg, A., and Wang, C. H. (2008) “Experimental Testing of BMI Laminates With Stress Concentrations and the Evaluation of SIFT to Predict Failure,” Composite Structures, Vol. 86, pp. 85-95.
26. Horgan, C., Smayda, M. (2012) “The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials,” Mechanics of Materials, Vol. 51, pp. 43-52.
27. Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions) (2019), Version 6.0, MN 55401.
28. McNaught, S. (2009) “Implementation Of The Strain Invariant Failure Theory For Failure Of Composite Materials,” Master′s thesis.
29. Naqvi M.W., Zaid, M., Sadique, R., and Alam M.M. (2017) “Dynamic analysis of rock tunnels considering joint dip angle : A finite element approach,”.
30. Potyondy, D.O., and Cundall, P.A. (2004) “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 8, pp. 1329-1364.
31. Richards, R.J., (2000) “Principles of solid mechanics”, CRC Press, New York, pp. 23-61.
32. Romana, M. (1985) “New Adjustment Ratings for Application of Bieniawski Classification to Slopes,” Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, International Society of Rock Mechanics, Zacatecas, 49-53.
33. Romer, C., and Ferentinou, M. (2019) “Numerical investigations of Rock Bridge effect on open pit slope stability,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 11, No. 6, pp. 1184–1200.
34. Sagong, M., Park, D., Yoo, J., Lee, J. (2011) “Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, pp. 1055-1067.
35. Scholtès, L., and Donzé, F.V. (2012) “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” International Journal of Rock Mechanics and Mining Sciences, Vol. 52, pp. 18-30.
36. Tay, T. E., Tan, S. H. N., Tan, V. B. C., and Gosse, J. H. (2005) “Damage progression by the element-failure method (EFM) and strain invariant failure theory (SIFT),” Composites Science and Technology, Vol. 65, pp. 935-944.
37. Vaníček, P., Grafarend, E., Berber, M., (2008) “Short Note: Strain invariants,” Journal of Geodesy, Vol. 8, pp. 263 -268.
38. Wang, C., Tannant, D.D., and Lilly, P.A. (2003) “Numerical Analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, No. 3, pp. 415–424.
39. Wang, L., Zhu, Z., Zhu, S., and Wu, J. (2023) “A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel”.
40. Yang, X., Jing, H., Chen, K. (2016) “Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression,” International Journal of Mining Science and Technology, Vol. 26, pp. 729-738.
41. Zhao, J., Zhoa, D., (2013) “Investigation of Strain Measurements using Digital Image Correlation with a Finite Element Method,” Journal of the Optical Society of Korea, Vol. 17, pp. 399-404.
指導教授 田永銘(Yong-Ming Tien) 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明