參考文獻 |
1. Rawla, P., Epidemiology of prostate cancer. World journal of oncology, 2019. 10(2): p. 63.
2. Kaufman, J.M. and R.J. Graydon, Androgen replacement after curative radical prostatectomy
for prostate cancer in hypogonadal men. The Journal of urology, 2004. 172(3): p. 920-922.
3. Wigle, D.T., et al., Role of hormonal and other factors in human prostate cancer. Journal of
Toxicology and Environmental Health, Part B, 2008. 11(3-4): p. 242-259.
4. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
5. Kimura, T. and S. Egawa, Epidemiology of prostate cancer in Asian countries. Int J Urol, 2018.
25(6): p. 524-531.
6. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J
Cancer, 2010. 127(12): p. 2893-917.
7. Lin, P.H., et al., Increasing incidence of prostate cancer in Taiwan: A study of related factors
using a nationwide health and welfare database. Medicine (Baltimore), 2020. 99(39): p.
e22336.
8. at, M.o.H.a.W.a., Taiwanese Health Promotion Administration,. 2015, Annual Reports of
Cancer Registry.
9. Chuu, C.-P., et al., Modulation of liver X receptor signaling as novel therapy for prostate
cancer. Journal of biomedical science, 2007. 14(5): p. 543-553.
10. Kaighn, M., et al., Establishment and characterization of a human prostatic carcinoma cell
line (PC-3). Investigative urology, 1979. 17(1): p. 16-23.
11. Stone, K.R., et al., Isolation of a human prostate carcinoma cell line (DU 145). International
journal of cancer, 1978. 21(3): p. 274-281.
12. Bolla, M., et al., The role of radiotherapy in localised and locally advanced prostate cancer.
Asian J Urol, 2019. 6(2): p. 153-161.
13. Sadar, M.D., Small molecule inhibitors targeting the "achilles′ heel" of androgen receptor
activity. Cancer Res, 2011. 71(4): p. 1208-13.
14. Bubendorf, L., et al., Metastatic patterns of prostate cancer: an autopsy study of 1,589
patients. Hum Pathol, 2000. 31(5): p. 578-83.
15. Ibrahim, T., et al., Pathogenesis of osteoblastic bone metastases from prostate cancer.
Cancer, 2010. 116(6): p. 1406-1418.
16. Keller, E.T., et al., Prostate carcinoma skeletal metastases: cross-talk between tumor and
bone. Cancer Metastasis Rev, 2001. 20(3-4): p. 333-49.
17. Huggins, C. and C.V. Hodges, Studies on prostatic cancer. I. The effect of castration, of
estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the
prostate. CA Cancer J Clin, 1972. 22(4): p. 232-40.
18. Seruga, B. and I.F. Tannock, Intermittent androgen blockade should be regarded as standard
therapy in prostate cancer. Nat Clin Pract Oncol, 2008. 5(10): p. 574-6.
19. Seruga, B. and I.F. Tannock, Intermittent androgen blockade should be regarded as standard
therapy in prostate cancer. Nat Clin Pract Oncol, 2008. 5(10): p. 574-6.
20. Anderson, K.M. and S. Liao, Selective retention of dihydrotestosterone by prostatic nuclei.
Nature, 1968. 219(5151): p. 277-9.
21. Petrylak, D.P., et al., Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351(15): p. 1513-20.
22. Tannock, I.F., et al., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N Engl J Med, 2004. 351(15): p. 1502-12.
23. Petrylak, D.P., et al., Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351(15): p. 1513-20.
24. Tannock, I.F., et al., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N Engl J Med, 2004. 351(15): p. 1502-12.
25. Kroon, J., et al., Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate
Cancer. Trends Pharmacol Sci, 2016. 37(6): p. 451-462.
26. Kraus, L.A., et al., The mechanism of action of docetaxel (Taxotere) in xenograft models is not
limited to bcl-2 phosphorylation. Invest New Drugs, 2003. 21(3): p. 259-68.
27. Eisenhauer, E.A. and J.B. Vermorken, The taxoids. Comparative clinical pharmacology and
therapeutic potential. Drugs, 1998. 55(1): p. 5-30.
28. Pienta, K.J., Preclinical mechanisms of action of docetaxel and docetaxel combinations in
prostate cancer. Semin Oncol, 2001. 28(4 Suppl 15): p. 3-7.
29. Fabbri, F., et al., Mitotic catastrophe and apoptosis induced by docetaxel in hormonerefractory prostate cancer cells. J Cell Physiol, 2008. 217(2): p. 494-501.
30. Fabbri, F., et al., Mitotic catastrophe and apoptosis induced by docetaxel in hormonerefractory prostate cancer cells. J Cell Physiol, 2008. 217(2): p. 494-501.
31. Kramer, G., et al., Docetaxel induces apoptosis in hormone refractory prostate carcinomas
during multiple treatment cycles. Br J Cancer, 2006. 94(11): p. 1592-8.
32. Apfel, R., et al., A novel orphan receptor specific for a subset of thyroid hormone-responsive
elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular
and cellular biology, 1994. 14(10): p. 7025-7035.
33. Vedin, L.L., J.Å. Gustafsson, and K.R. Steffensen, The oxysterol receptors LXRα and LXRβ
suppress proliferation in the colon. Molecular carcinogenesis, 2013. 52(11): p. 835-844.
34. Zelcer, N. and P. Tontonoz, Liver X receptors as integrators of metabolic and inflammatory
signaling. The Journal of clinical investigation, 2006. 116(3): p. 607-614.
35. Bilotta, M.T., et al., Liver X receptors: regulators of cholesterol metabolism, inflammation,
autoimmunity, and cancer. Frontiers in immunology, 2020. 11: p. 584303.
36. Janowski, B.A., et al., An oxysterol signalling pathway mediated by the nuclear receptor LXRα.
Nature, 1996. 383(6602): p. 728-731.
37. Janowski, B.A., et al., Structural requirements of ligands for the oxysterol liver X receptors
LXRα and LXRβ. Proceedings of the National Academy of Sciences, 1999. 96(1): p. 266-271.
38. Bensinger, S.J. and P. Tontonoz, Integration of metabolism and inflammation by lipidactivated nuclear receptors. Nature, 2008. 454(7203): p. 470-477.
39. Arienti, G., E. Carlini, and C. Palmerini, Fusion of human sperm to prostasomes at acidic pH.
The Journal of membrane biology, 1997. 155(1): p. 89-94.
40. Sporer, A., D.R. Brill, and C.P. Schaffner, Epoxycholesterols in secretions and tissues of
normal, benign, and cancerous human prostate glands. Urology, 1982. 20(3): p. 244-50.
41. de Boussac, H., et al., LXR, prostate cancer and cholesterol: the good, the bad and the ugly.
American journal of cancer research, 2013. 3(1): p. 58.
42. Liang, X., et al., LXRα‐mediated downregulation of EGFR suppress colorectal cancer cell
proliferation. Journal of Cellular Biochemistry, 2019. 120(10): p. 17391-17404.
43. Collins, J.L., et al., Identification of a nonsteroidal liver X receptor agonist through parallel
array synthesis of tertiary amines. Journal of medicinal chemistry, 2002. 45(10): p. 1963-
1966.
44. Peng, D., et al., Antiatherosclerotic effects of a novel synthetic tissue-selective steroidal liver X
receptor agonist in low-density lipoprotein receptor-deficient mice. Journal of Pharmacology
and Experimental Therapeutics, 2008. 327(2): p. 332-342.
45. Song, C. and S. Liao, Hypolipidemic effects of selective liver X receptor alpha agonists.
Steroids, 2001. 66(9): p. 673-681.
46. Kaneko, E., et al., Induction of intestinal ATP-binding cassette transporters by a phytosterolderived liver X receptor agonist. Journal of biological chemistry, 2003. 278(38): p. 36091-
36098.
47. Collins, J.L., et al., Identification of a nonsteroidal liver X receptor agonist through parallel
array synthesis of tertiary amines. J Med Chem, 2002. 45(10): p. 1963-6.
48. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer research, 2004. 64(21): p. 7686-7689.
49. Chuu, C.P., et al., Inhibition of tumor growth and progression of LNCaP prostate cancer cells
in athymic mice by androgen and liver X receptor agonist. Cancer Res, 2006. 66(13): p. 6482-
6.
50. Bai, J., Y. Li, and G. Zhang, Cell cycle regulation and anticancer drug discovery. Cancer biology
& medicine, 2017. 14(4): p. 348.
51. Weinberg, R. and D. Hanahan, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
52. Gstaiger, M., et al., Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci
U S A, 2001. 98(9): p. 5043-8.
53. Carrano, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor
p27. Nature cell biology, 1999. 1(4): p. 193-199.
54. Dang, C.V., et al. The c-Myc target gene network. in Seminars in cancer biology. 2006.
Elsevier.
55. Dang, C.V., A. Le, and P. Gao, MYC-Induced Cancer Cell Energy Metabolism and Therapeutic
Opportunities Targeting MYC-Induced Cancer Cell Energy. Clinical cancer research, 2009.
15(21): p. 6479-6483.
56. Armelin, H.A., et al., Functional role for c-myc in mitogenic response to platelet-derived
growth factor. Nature, 1984. 310(5979): p. 655-660.
57. Kelly, K., et al., Cell-specific regulation of the c-myc gene by lymphocyte mitogens and
platelet-derived growth factor. Cell, 1983. 35(3): p. 603-610.
58. Eilers, M. and R.N. Eisenman, Myc’s broad reach. Genes & development, 2008. 22(20): p.
2755-2766.
59. Kitahara, C.M., et al., Total cholesterol and cancer risk in a large prospective study in Korea.
Journal of Clinical Oncology, 2011. 29(12): p. 1592.
60. Vedhachalam, C., et al., Mechanism of ATP-binding cassette transporter A1-mediated cellular
lipid efflux to apolipoprotein AI and formation of high density lipoprotein particles. Journal of
Biological Chemistry, 2007. 282(34): p. 25123-25130.
61. Mahley, R.W., Apolipoprotein E: cholesterol transport protein with expanding role in cell
biology. Science, 1988. 240(4852): p. 622-630.
62. Laffitte, B.A., et al., LXRs control lipid-inducible expression of the apolipoprotein E gene in
macrophages and adipocytes. Proceedings of the National Academy of Sciences, 2001. 98(2):
p. 507-512.
63. Hayek, T., et al., Role of HDL apolipoprotein E in cellular cholesterol efflux: studies in apo E
knockout transgenic mice. Biochemical and biophysical research communications, 1994.
205(2): p. 1072-1078.
64. Browning, P.J., et al., Apolipoprotein E (ApoE), a novel heparin-binding protein inhibits the
development of Kaposi′s sarcoma-like lesions in BALB/c nu/nu mice. The Journal of
experimental medicine, 1994. 180(5): p. 1949-1954.
65. Zhang, W.-Y., P.M. Gaynor, and H.S. Kruth, Apolipoprotein E produced by human monocytederived macrophages mediates cholesterol efflux that occurs in the absence of added
cholesterol acceptors. Journal of Biological Chemistry, 1996. 271(45): p. 28641-28646.
66. Chuu, C.P., et al., Suppression of androgen receptor signaling and prostate specific antigen
expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate
cancer cells. Cancer Lett, 2009. 275(1): p. 86-92.
67. Huo, C., Y.H. Kao, and C.P. Chuu, Androgen receptor inhibits epithelial-mesenchymal
transition, migration, and invasion of PC-3 prostate cancer cells. Cancer Lett, 2015. 369(1): p.
103-11.
68. Chuu, C.P., et al., Androgen suppresses proliferation of castration-resistant LNCaP 104-R2
prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci, 2011. 102(11):
p. 2022-8.
69. Chuu, C.P., et al., Caffeic acid phenethyl ester suppresses the proliferation of human prostate
cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila),
2012. 5(5): p. 788-97.
70. Minami, M., et al., STAT3 activation is a critical step in gp130-mediated terminal
differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A, 1996. 93(9):
p. 3963-6.
71. Nakajima, K., et al., A central role for Stat3 in IL-6-induced regulation of growth and
differentiation in M1 leukemia cells. Embo j, 1996. 15(14): p. 3651-8.
72. Bromberg, J.F., Activation of STAT proteins and growth control. Bioessays, 2001. 23(2): p.
161-169.
73. Chapman, R.S., et al., Suppression of epithelial apoptosis and delayed mammary gland
involution in mice with a conditional knockout of Stat3. Genes & development, 1999. 13(19):
p. 2604-2616.
74. Spiotto, M.T. and T.D. Chung, STAT3 mediates IL‐6‐induced growth inhibition in the human
prostate cancer cell line LNCaP. The Prostate, 2000. 42(2): p. 88-98.
75. Araki, S., et al., Interleukin-8 is a molecular determinant of androgen independence and
progression in prostate cancer. Cancer Res, 2007. 67(14): p. 6854-62.
76. Buttyan, R., et al., Enhanced expression of the c‐myc protooncogene in high‐grade human
prostate cancers. The Prostate, 1987. 11(4): p. 327-337.
77. Kroon, J., et al., Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate
Cancer. Trends Pharmacol Sci, 2016. 37(6): p. 451-462.
78. Grefhorst, A., et al., Pharmacological LXR activation reduces presence of SR-B1 in liver
membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis,
2012. 222(2): p. 382-9.
79. Gutierrez-Pajares, J.L., et al., SR-BI: Linking Cholesterol and Lipoprotein Metabolism with
Breast and Prostate Cancer. Front Pharmacol, 2016. 7: p. 338.
80. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer Res, 2004. 64(21): p. 7686-9.
81. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer Res, 2004. 64(21): p. 7686-9.
82. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer research, 2004. 64(21): p. 7686-7689.
83. Chuu, C.-P. and H.-P. Lin, Antiproliferative effect of LXR agonists T0901317 and 22 (R)-
hydroxycholesterol on multiple human cancer cell lines. Anticancer research, 2010. 30(9): p.
3643-3648.
84. Rough, J.J., et al., Anti-proliferative effect of LXR agonist T0901317 in ovarian carcinoma cells.
Journal of ovarian research, 2010. 3(1): p. 1-10.
85. Ding, X., et al., The role of cholesterol metabolism in cancer. American journal of cancer
research, 2019. 9(2): p. 219.
86. Ding, X., et al., The role of cholesterol metabolism in cancer. Am J Cancer Res, 2019. 9(2): p.
219-227.
87. Repa, J.J., et al., Regulation of mouse sterol regulatory element-binding protein-1c gene
(SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes & development, 2000. 14(22): p.
2819-2830.
88. Tall, A.R., P. Costet, and N. Wang, Regulation and mechanisms of macrophage cholesterol
efflux. The Journal of clinical investigation, 2002. 110(7): p. 899-904.
89. Vedhachalam, C., et al., Mechanism of ATP-binding cassette transporter A1-mediated cellular
lipid efflux to apolipoprotein AI and formation of high density lipoprotein particles. Journal of
Biological Chemistry, 2007. 282(34): p. 25123-25130.
90. Lee, B.H., et al., Dysregulation of cholesterol homeostasis in human prostate cancer through
loss of ABCA1. Cancer Res, 2013. 73(3): p. 1211-8.
91. Yu, L., et al., Stimulation of cholesterol excretion by the liver X receptor agonist requires ATPbinding cassette transporters G5 and G8. J Biol Chem, 2003. 278(18): p. 15565-70.
92. Wang, J., et al., Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res, 2015. 56(2):
p. 319-30.
93. Wilund, K.R., et al., High-level expression of ABCG5 and ABCG8 attenuates diet-induced
hypercholesterolemia and atherosclerosis in Ldlr-/- mice. J Lipid Res, 2004. 45(8): p. 1429-36.
94. Repa, J.J. and D.J. Mangelsdorf, The liver X receptor gene team: potential new players in
atherosclerosis. Nature medicine, 2002. 8(11): p. 1243-1248.
95. Qiu, T., et al., 24-Dehydrocholesterol reductase promotes the growth of breast cancer stemlike cells through the Hedgehog pathway. Cancer Sci, 2020. 111(10): p. 3653-3664.
96. Liu, X.P., et al., DHCR24 predicts poor clinicopathological features of patients with bladder
cancer: A STROBE-compliant study. Medicine (Baltimore), 2018. 97(39): p. e11830.
97. Wu, J., et al., Genkwadaphnin inhibits growth and invasion in hepatocellular carcinoma by
blocking DHCR24-mediated cholesterol biosynthesis and lipid rafts formation. Br J Cancer,
2020. 123(11): p. 1673-1685.
98. Thoma, R., et al., Insight into steroid scaffold formation from the structure of human
oxidosqualene cyclase. Nature, 2004. 432(7013): p. 118-22.
99. Inoue, K., et al., Interleukin 8 expression regulates tumorigenicity and metastases in
androgen-independent prostate cancer. Clinical Cancer Research, 2000. 6(5): p. 2104-2119.
100. Bovenga, F., C. Sabbà, and A. Moschetta, Uncoupling nuclear receptor LXR and cholesterol
metabolism in cancer. Cell Metab, 2015. 21(4): p. 517-26.
101. Jiang, S., et al., Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer
Cells by Suppressing Degradation of EGFR through APMAP. Cancer Res, 2019. 79(12): p. 3063-
3075.
102. Elia, J., et al., 4-cholesten-3-one decreases breast cancer cell viability and alters membrane
raft-localized EGFR expression by reducing lipogenesis and enhancing LXR-dependent
cholesterol transporters. Lipids Health Dis, 2019. 18(1): p. 168.
103. Lou, R., et al., Liver X receptor agonist T0901317 inhibits the migration and invasion of nonsmall-cell lung cancer cells in vivo and in vitro. Anticancer Drugs, 2019. 30(5): p. 495-500.
104. Pencheva, N., et al., Broad-spectrum therapeutic suppression of metastatic melanoma
through nuclear hormone receptor activation. Cell, 2014. 156(5): p. 986-1001. |