博碩士論文 109821604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.139.103.163
姓名 Anika Tabassum(Anika Tabassum)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 肝 X 受體活化物透過調控細胞週期與 c-Myc 進而抑制歐洲紫杉 醇抗藥性攝護腺癌的增生
(Liver X Receptor agonist suppresses the proliferation of Docetaxel resistant prostate cancer cells via cell-cycle regulation and inhibition of c-Myc)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 歐洲紫杉醇是主要用來治療轉移性攝護腺癌的抗癌藥物。然而大部分的病人在接受歐
洲紫杉醇治療時會產生抗藥性。先前的研究指出肝 X 受體(LXR)與其激活物 T0901317
在許多癌症中具有抗癌的活性,包含攝護腺癌。因此我們探討 T0901317 是否可以抑制
對於歐洲紫杉醇具有抗性的攝護腺癌細胞株的增生與存活。結果顯示 T0901317 可以抑
制抗藥性及非抗藥性癌細胞的增生,同時抑制細胞週期。流式細胞儀的結果也發現
T0901317 會減少抗藥性癌細胞在 G2/M 的分佈,而在 S phase 的細胞群增加,推測細胞
週期停止在 S-G2/M 檢查點。我們也發現 T0901317 會抑制抗藥性細胞株的轉移能力。
RT-PCR 的結果顯示 T0901317 會抑制抗藥性細胞株中與膽固醇合成、膽固醇移轉、脂
質合成以及脂肪酸合成相關的基因表現。而西方墨點法的結果也發現 T0901317 會降低
Skp2、c-Myc、AKT、STAT-3、JAK2 的蛋白質表現及增加 P27 及 P53 的蛋白質表現。
過量表現 c-Myc 可以看到由 T0901317 所造成的細胞抑制有回復的現象。綜合以上結
果,我們發現 T0901317 可以藉由降低 c-Myc 的表現來抑制抗藥性攝護腺癌細胞的增生
與存活。而肝 X 受體的活化在未來或許可以做為治療歐洲紫杉醇抗藥性攝護腺癌的治
療標的。
摘要(英) Taxane-based treatment, mainly docetaxel is a standard therapy for metastatic castrationresistant prostate cancer (CRPC) patients. Yet, the majority of patients acquire resistance to docetaxel during the treatment. T0901317 is a potent agonist for Liver X receptors (LXRs), LXRs belong to the nuclear superfamily. Previous research has demonstrated anti-cancer activity of LXR agonists on numerous cancer cell lines including prostate cancer (PCa) cells. We examined the effects of T0901317 on the proliferation and survival of docetaxel resistant PCa cells. Treatment with T0901317 suppressed the proliferation and caused cell cycle in PC3 and DU-145 cells and docetaxel-resistant PC/DX25 and DU/DX50 cells which were derived from PC-3 and DU-145, respectively. Flow cytometry analysis showed that T0901317 treatment reduced the percentage of cell population of PC/DX25 cells in G2/M phase and increased cell population in S phase, suggesting that T0901317 induced cell cycle arrest at the
S-G2/M checkpoint. T0901317 also decreased the migration of docetaxel PC/DX25 cells. RTPCR revealed that treatment with T0901317 affected the expression of genes regulating
cholesterol and fatty acid metabolism in docetaxel resistant PC-3 cells, including the genes involved in cholesterol biosynthesis, cholesterol efflux, lipogenesis and fatty acid synthase. Western blotting assay showed that T0901317 treatment down-regulated the protein expression of SKP2, c-Myc, AKT, STAT-3, JAK2 and increased the abundance of P27 protein. Overexpression of c-Myc rescued the suppression of cell proliferation of PC/DX25 cells under T0901317 treatment. In conclusion, T0901317 treatment suppressed the proliferation and survival of docetaxel-resistant PCa cells by inhibiting c-Myc. Activation of LXR can be a potential therapeutic approach for PCa patient resistant to docetaxel therapy.
關鍵字(中) ★ 前列腺癌
★ 肝X受体
關鍵字(英) ★ PCa, prostate cancer
★ LXR, liver X receptor
論文目次 ABSTRACT.................................................V I
TABLE OF CONTENTS .....................................VIII
ABBREVIATIONS:..........................................X
CHAPTER 1: INTRODUCTION ...........................1
1.1. Prostate cancer.....................................1
1.2.Prostate cancer therapy ..............................2
1.3.Docetexal resistance prostate cancer ...............2
1.4.Liver X Receptor ...............................3
1.5.Cell cycle ...........................................4
1.6.c-Myc protein................................5
1.7. Cholesterol Efflux..............................6
CHAPTER 2: EXPERIMENT ....................... 7
2.Materials and Methods............................7
2.1.Chemicals ................7
2.2.Cell Culture....................7
2.3.Cell proliferation assay and chemicals .......7
2.4.Immunofluorescence staining ..................8
2.5.Flow cytometry analysis..........................8
2.6.Western blot analysis.................................9
2.7.RT- Real time PRC..................................9
2.8.Overexpression target protein.................10
2.9.wound healing............................10
ix
2.10.Statistical analysis.......................11
3.CHAPTER 3: RESULT ...............................12
4.CHAPTER 4: DISCUSSION.................16
5.CHAPTER 5: CONCLUSION .................20
6.CHAPTER 6: FIGURES AND FIGURE LEGENDS...21
6.1.Figure 1.............................21
6.2.Figure 2...................................22
6.3.Figure 3......................................23
6.4.Figure 4..............................24
6.5.Figure 5..................................25
6.6.Figure 6..............................26
6.7.Figure 7..................................27
6.8.Figure 8..........................28
6.9.Figure 9...............................29
7.REFERENCES .........................................30
8.APPENDIX ................................40
9. Supplementary Data................40
參考文獻 1. Rawla, P., Epidemiology of prostate cancer. World journal of oncology, 2019. 10(2): p. 63.
2. Kaufman, J.M. and R.J. Graydon, Androgen replacement after curative radical prostatectomy
for prostate cancer in hypogonadal men. The Journal of urology, 2004. 172(3): p. 920-922.
3. Wigle, D.T., et al., Role of hormonal and other factors in human prostate cancer. Journal of
Toxicology and Environmental Health, Part B, 2008. 11(3-4): p. 242-259.
4. Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
5. Kimura, T. and S. Egawa, Epidemiology of prostate cancer in Asian countries. Int J Urol, 2018.
25(6): p. 524-531.
6. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J
Cancer, 2010. 127(12): p. 2893-917.
7. Lin, P.H., et al., Increasing incidence of prostate cancer in Taiwan: A study of related factors
using a nationwide health and welfare database. Medicine (Baltimore), 2020. 99(39): p.
e22336.
8. at, M.o.H.a.W.a., Taiwanese Health Promotion Administration,. 2015, Annual Reports of
Cancer Registry.
9. Chuu, C.-P., et al., Modulation of liver X receptor signaling as novel therapy for prostate
cancer. Journal of biomedical science, 2007. 14(5): p. 543-553.
10. Kaighn, M., et al., Establishment and characterization of a human prostatic carcinoma cell
line (PC-3). Investigative urology, 1979. 17(1): p. 16-23.
11. Stone, K.R., et al., Isolation of a human prostate carcinoma cell line (DU 145). International
journal of cancer, 1978. 21(3): p. 274-281.
12. Bolla, M., et al., The role of radiotherapy in localised and locally advanced prostate cancer.
Asian J Urol, 2019. 6(2): p. 153-161.
13. Sadar, M.D., Small molecule inhibitors targeting the "achilles′ heel" of androgen receptor
activity. Cancer Res, 2011. 71(4): p. 1208-13.
14. Bubendorf, L., et al., Metastatic patterns of prostate cancer: an autopsy study of 1,589
patients. Hum Pathol, 2000. 31(5): p. 578-83.
15. Ibrahim, T., et al., Pathogenesis of osteoblastic bone metastases from prostate cancer.
Cancer, 2010. 116(6): p. 1406-1418.
16. Keller, E.T., et al., Prostate carcinoma skeletal metastases: cross-talk between tumor and
bone. Cancer Metastasis Rev, 2001. 20(3-4): p. 333-49.
17. Huggins, C. and C.V. Hodges, Studies on prostatic cancer. I. The effect of castration, of
estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the
prostate. CA Cancer J Clin, 1972. 22(4): p. 232-40.
18. Seruga, B. and I.F. Tannock, Intermittent androgen blockade should be regarded as standard
therapy in prostate cancer. Nat Clin Pract Oncol, 2008. 5(10): p. 574-6.
19. Seruga, B. and I.F. Tannock, Intermittent androgen blockade should be regarded as standard
therapy in prostate cancer. Nat Clin Pract Oncol, 2008. 5(10): p. 574-6.
20. Anderson, K.M. and S. Liao, Selective retention of dihydrotestosterone by prostatic nuclei.
Nature, 1968. 219(5151): p. 277-9.
21. Petrylak, D.P., et al., Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351(15): p. 1513-20.
22. Tannock, I.F., et al., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N Engl J Med, 2004. 351(15): p. 1502-12.
23. Petrylak, D.P., et al., Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351(15): p. 1513-20.
24. Tannock, I.F., et al., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced
prostate cancer. N Engl J Med, 2004. 351(15): p. 1502-12.
25. Kroon, J., et al., Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate
Cancer. Trends Pharmacol Sci, 2016. 37(6): p. 451-462.
26. Kraus, L.A., et al., The mechanism of action of docetaxel (Taxotere) in xenograft models is not
limited to bcl-2 phosphorylation. Invest New Drugs, 2003. 21(3): p. 259-68.
27. Eisenhauer, E.A. and J.B. Vermorken, The taxoids. Comparative clinical pharmacology and
therapeutic potential. Drugs, 1998. 55(1): p. 5-30.
28. Pienta, K.J., Preclinical mechanisms of action of docetaxel and docetaxel combinations in
prostate cancer. Semin Oncol, 2001. 28(4 Suppl 15): p. 3-7.
29. Fabbri, F., et al., Mitotic catastrophe and apoptosis induced by docetaxel in hormonerefractory prostate cancer cells. J Cell Physiol, 2008. 217(2): p. 494-501.
30. Fabbri, F., et al., Mitotic catastrophe and apoptosis induced by docetaxel in hormonerefractory prostate cancer cells. J Cell Physiol, 2008. 217(2): p. 494-501.
31. Kramer, G., et al., Docetaxel induces apoptosis in hormone refractory prostate carcinomas
during multiple treatment cycles. Br J Cancer, 2006. 94(11): p. 1592-8.
32. Apfel, R., et al., A novel orphan receptor specific for a subset of thyroid hormone-responsive
elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular
and cellular biology, 1994. 14(10): p. 7025-7035.
33. Vedin, L.L., J.Å. Gustafsson, and K.R. Steffensen, The oxysterol receptors LXRα and LXRβ
suppress proliferation in the colon. Molecular carcinogenesis, 2013. 52(11): p. 835-844.
34. Zelcer, N. and P. Tontonoz, Liver X receptors as integrators of metabolic and inflammatory
signaling. The Journal of clinical investigation, 2006. 116(3): p. 607-614.
35. Bilotta, M.T., et al., Liver X receptors: regulators of cholesterol metabolism, inflammation,
autoimmunity, and cancer. Frontiers in immunology, 2020. 11: p. 584303.
36. Janowski, B.A., et al., An oxysterol signalling pathway mediated by the nuclear receptor LXRα.
Nature, 1996. 383(6602): p. 728-731.
37. Janowski, B.A., et al., Structural requirements of ligands for the oxysterol liver X receptors
LXRα and LXRβ. Proceedings of the National Academy of Sciences, 1999. 96(1): p. 266-271.
38. Bensinger, S.J. and P. Tontonoz, Integration of metabolism and inflammation by lipidactivated nuclear receptors. Nature, 2008. 454(7203): p. 470-477.
39. Arienti, G., E. Carlini, and C. Palmerini, Fusion of human sperm to prostasomes at acidic pH.
The Journal of membrane biology, 1997. 155(1): p. 89-94.
40. Sporer, A., D.R. Brill, and C.P. Schaffner, Epoxycholesterols in secretions and tissues of
normal, benign, and cancerous human prostate glands. Urology, 1982. 20(3): p. 244-50.
41. de Boussac, H., et al., LXR, prostate cancer and cholesterol: the good, the bad and the ugly.
American journal of cancer research, 2013. 3(1): p. 58.
42. Liang, X., et al., LXRα‐mediated downregulation of EGFR suppress colorectal cancer cell
proliferation. Journal of Cellular Biochemistry, 2019. 120(10): p. 17391-17404.
43. Collins, J.L., et al., Identification of a nonsteroidal liver X receptor agonist through parallel
array synthesis of tertiary amines. Journal of medicinal chemistry, 2002. 45(10): p. 1963-
1966.
44. Peng, D., et al., Antiatherosclerotic effects of a novel synthetic tissue-selective steroidal liver X
receptor agonist in low-density lipoprotein receptor-deficient mice. Journal of Pharmacology
and Experimental Therapeutics, 2008. 327(2): p. 332-342.
45. Song, C. and S. Liao, Hypolipidemic effects of selective liver X receptor alpha agonists.
Steroids, 2001. 66(9): p. 673-681.
46. Kaneko, E., et al., Induction of intestinal ATP-binding cassette transporters by a phytosterolderived liver X receptor agonist. Journal of biological chemistry, 2003. 278(38): p. 36091-
36098.
47. Collins, J.L., et al., Identification of a nonsteroidal liver X receptor agonist through parallel
array synthesis of tertiary amines. J Med Chem, 2002. 45(10): p. 1963-6.
48. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer research, 2004. 64(21): p. 7686-7689.
49. Chuu, C.P., et al., Inhibition of tumor growth and progression of LNCaP prostate cancer cells
in athymic mice by androgen and liver X receptor agonist. Cancer Res, 2006. 66(13): p. 6482-
6.
50. Bai, J., Y. Li, and G. Zhang, Cell cycle regulation and anticancer drug discovery. Cancer biology
& medicine, 2017. 14(4): p. 348.
51. Weinberg, R. and D. Hanahan, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
52. Gstaiger, M., et al., Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci
U S A, 2001. 98(9): p. 5043-8.
53. Carrano, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor
p27. Nature cell biology, 1999. 1(4): p. 193-199.
54. Dang, C.V., et al. The c-Myc target gene network. in Seminars in cancer biology. 2006.
Elsevier.
55. Dang, C.V., A. Le, and P. Gao, MYC-Induced Cancer Cell Energy Metabolism and Therapeutic
Opportunities Targeting MYC-Induced Cancer Cell Energy. Clinical cancer research, 2009.
15(21): p. 6479-6483.
56. Armelin, H.A., et al., Functional role for c-myc in mitogenic response to platelet-derived
growth factor. Nature, 1984. 310(5979): p. 655-660.
57. Kelly, K., et al., Cell-specific regulation of the c-myc gene by lymphocyte mitogens and
platelet-derived growth factor. Cell, 1983. 35(3): p. 603-610.
58. Eilers, M. and R.N. Eisenman, Myc’s broad reach. Genes & development, 2008. 22(20): p.
2755-2766.
59. Kitahara, C.M., et al., Total cholesterol and cancer risk in a large prospective study in Korea.
Journal of Clinical Oncology, 2011. 29(12): p. 1592.
60. Vedhachalam, C., et al., Mechanism of ATP-binding cassette transporter A1-mediated cellular
lipid efflux to apolipoprotein AI and formation of high density lipoprotein particles. Journal of
Biological Chemistry, 2007. 282(34): p. 25123-25130.
61. Mahley, R.W., Apolipoprotein E: cholesterol transport protein with expanding role in cell
biology. Science, 1988. 240(4852): p. 622-630.
62. Laffitte, B.A., et al., LXRs control lipid-inducible expression of the apolipoprotein E gene in
macrophages and adipocytes. Proceedings of the National Academy of Sciences, 2001. 98(2):
p. 507-512.
63. Hayek, T., et al., Role of HDL apolipoprotein E in cellular cholesterol efflux: studies in apo E
knockout transgenic mice. Biochemical and biophysical research communications, 1994.
205(2): p. 1072-1078.
64. Browning, P.J., et al., Apolipoprotein E (ApoE), a novel heparin-binding protein inhibits the
development of Kaposi′s sarcoma-like lesions in BALB/c nu/nu mice. The Journal of
experimental medicine, 1994. 180(5): p. 1949-1954.
65. Zhang, W.-Y., P.M. Gaynor, and H.S. Kruth, Apolipoprotein E produced by human monocytederived macrophages mediates cholesterol efflux that occurs in the absence of added
cholesterol acceptors. Journal of Biological Chemistry, 1996. 271(45): p. 28641-28646.
66. Chuu, C.P., et al., Suppression of androgen receptor signaling and prostate specific antigen
expression by (-)-epigallocatechin-3-gallate in different progression stages of LNCaP prostate
cancer cells. Cancer Lett, 2009. 275(1): p. 86-92.
67. Huo, C., Y.H. Kao, and C.P. Chuu, Androgen receptor inhibits epithelial-mesenchymal
transition, migration, and invasion of PC-3 prostate cancer cells. Cancer Lett, 2015. 369(1): p.
103-11.
68. Chuu, C.P., et al., Androgen suppresses proliferation of castration-resistant LNCaP 104-R2
prostate cancer cells through androgen receptor, Skp2, and c-Myc. Cancer Sci, 2011. 102(11):
p. 2022-8.
69. Chuu, C.P., et al., Caffeic acid phenethyl ester suppresses the proliferation of human prostate
cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila),
2012. 5(5): p. 788-97.
70. Minami, M., et al., STAT3 activation is a critical step in gp130-mediated terminal
differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci U S A, 1996. 93(9):
p. 3963-6.
71. Nakajima, K., et al., A central role for Stat3 in IL-6-induced regulation of growth and
differentiation in M1 leukemia cells. Embo j, 1996. 15(14): p. 3651-8.
72. Bromberg, J.F., Activation of STAT proteins and growth control. Bioessays, 2001. 23(2): p.
161-169.
73. Chapman, R.S., et al., Suppression of epithelial apoptosis and delayed mammary gland
involution in mice with a conditional knockout of Stat3. Genes & development, 1999. 13(19):
p. 2604-2616.
74. Spiotto, M.T. and T.D. Chung, STAT3 mediates IL‐6‐induced growth inhibition in the human
prostate cancer cell line LNCaP. The Prostate, 2000. 42(2): p. 88-98.
75. Araki, S., et al., Interleukin-8 is a molecular determinant of androgen independence and
progression in prostate cancer. Cancer Res, 2007. 67(14): p. 6854-62.
76. Buttyan, R., et al., Enhanced expression of the c‐myc protooncogene in high‐grade human
prostate cancers. The Prostate, 1987. 11(4): p. 327-337.
77. Kroon, J., et al., Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate
Cancer. Trends Pharmacol Sci, 2016. 37(6): p. 451-462.
78. Grefhorst, A., et al., Pharmacological LXR activation reduces presence of SR-B1 in liver
membranes contributing to LXR-mediated induction of HDL-cholesterol. Atherosclerosis,
2012. 222(2): p. 382-9.
79. Gutierrez-Pajares, J.L., et al., SR-BI: Linking Cholesterol and Lipoprotein Metabolism with
Breast and Prostate Cancer. Front Pharmacol, 2016. 7: p. 338.
80. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer Res, 2004. 64(21): p. 7686-9.
81. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer Res, 2004. 64(21): p. 7686-9.
82. Fukuchi, J., et al., Antiproliferative effect of liver X receptor agonists on LNCaP human
prostate cancer cells. Cancer research, 2004. 64(21): p. 7686-7689.
83. Chuu, C.-P. and H.-P. Lin, Antiproliferative effect of LXR agonists T0901317 and 22 (R)-
hydroxycholesterol on multiple human cancer cell lines. Anticancer research, 2010. 30(9): p.
3643-3648.
84. Rough, J.J., et al., Anti-proliferative effect of LXR agonist T0901317 in ovarian carcinoma cells.
Journal of ovarian research, 2010. 3(1): p. 1-10.
85. Ding, X., et al., The role of cholesterol metabolism in cancer. American journal of cancer
research, 2019. 9(2): p. 219.
86. Ding, X., et al., The role of cholesterol metabolism in cancer. Am J Cancer Res, 2019. 9(2): p.
219-227.
87. Repa, J.J., et al., Regulation of mouse sterol regulatory element-binding protein-1c gene
(SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes & development, 2000. 14(22): p.
2819-2830.
88. Tall, A.R., P. Costet, and N. Wang, Regulation and mechanisms of macrophage cholesterol
efflux. The Journal of clinical investigation, 2002. 110(7): p. 899-904.
89. Vedhachalam, C., et al., Mechanism of ATP-binding cassette transporter A1-mediated cellular
lipid efflux to apolipoprotein AI and formation of high density lipoprotein particles. Journal of
Biological Chemistry, 2007. 282(34): p. 25123-25130.
90. Lee, B.H., et al., Dysregulation of cholesterol homeostasis in human prostate cancer through
loss of ABCA1. Cancer Res, 2013. 73(3): p. 1211-8.
91. Yu, L., et al., Stimulation of cholesterol excretion by the liver X receptor agonist requires ATPbinding cassette transporters G5 and G8. J Biol Chem, 2003. 278(18): p. 15565-70.
92. Wang, J., et al., Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res, 2015. 56(2):
p. 319-30.
93. Wilund, K.R., et al., High-level expression of ABCG5 and ABCG8 attenuates diet-induced
hypercholesterolemia and atherosclerosis in Ldlr-/- mice. J Lipid Res, 2004. 45(8): p. 1429-36.
94. Repa, J.J. and D.J. Mangelsdorf, The liver X receptor gene team: potential new players in
atherosclerosis. Nature medicine, 2002. 8(11): p. 1243-1248.
95. Qiu, T., et al., 24-Dehydrocholesterol reductase promotes the growth of breast cancer stemlike cells through the Hedgehog pathway. Cancer Sci, 2020. 111(10): p. 3653-3664.
96. Liu, X.P., et al., DHCR24 predicts poor clinicopathological features of patients with bladder
cancer: A STROBE-compliant study. Medicine (Baltimore), 2018. 97(39): p. e11830.
97. Wu, J., et al., Genkwadaphnin inhibits growth and invasion in hepatocellular carcinoma by
blocking DHCR24-mediated cholesterol biosynthesis and lipid rafts formation. Br J Cancer,
2020. 123(11): p. 1673-1685.
98. Thoma, R., et al., Insight into steroid scaffold formation from the structure of human
oxidosqualene cyclase. Nature, 2004. 432(7013): p. 118-22.
99. Inoue, K., et al., Interleukin 8 expression regulates tumorigenicity and metastases in
androgen-independent prostate cancer. Clinical Cancer Research, 2000. 6(5): p. 2104-2119.
100. Bovenga, F., C. Sabbà, and A. Moschetta, Uncoupling nuclear receptor LXR and cholesterol
metabolism in cancer. Cell Metab, 2015. 21(4): p. 517-26.
101. Jiang, S., et al., Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer
Cells by Suppressing Degradation of EGFR through APMAP. Cancer Res, 2019. 79(12): p. 3063-
3075.
102. Elia, J., et al., 4-cholesten-3-one decreases breast cancer cell viability and alters membrane
raft-localized EGFR expression by reducing lipogenesis and enhancing LXR-dependent
cholesterol transporters. Lipids Health Dis, 2019. 18(1): p. 168.
103. Lou, R., et al., Liver X receptor agonist T0901317 inhibits the migration and invasion of nonsmall-cell lung cancer cells in vivo and in vitro. Anticancer Drugs, 2019. 30(5): p. 495-500.
104. Pencheva, N., et al., Broad-spectrum therapeutic suppression of metastatic melanoma
through nuclear hormone receptor activation. Cell, 2014. 156(5): p. 986-1001.
指導教授 褚志斌 高永熙(Chih Pin Chuu Yung-Hsi Kao) 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明