參考文獻 |
1. Wilson, A.H., The prostate gland: a review of its anatomy, pathology, and treatment. Jama, 2014. 312(5): p. 562.
2. Sharma, M., et al., The Prostate Gland. 2017: p. 17-35.
3. Josef Marx, F. and A. Karenberg, History of the term prostate. Prostate, 2009. 69(2): p. 208-13.
4. Wang, L., et al., Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front Public Health, 2022. 10: p. 811044.
5. Pu, Y.-S., Prostate cancer in Taiwan: Epidemiology and risk factors. International journal of andrology, 2000. 23 Suppl 2: p. 34-6.
6. Lin, P.H., et al., Increasing incidence of prostate cancer in Taiwan: A study of related factors using a nationwide health and welfare database. Medicine (Baltimore), 2020. 99(39): p. e22336.
7. Su, S.Y., Geographical variations of socioeconomic status and prostate cancer mortality in Taiwan. Cancer Causes Control, 2021. 32(3): p. 203-210.
8. Rawla, P., Epidemiology of Prostate Cancer. World J Oncol, 2019. 10(2): p. 63-89.
9. Hellerstedt, B.A. and K.J. Pienta, The Current State of Hormonal Therapy for Prostate Cancer. CA: A Cancer Journal for Clinicians, 2002. 52.
10. Dai, C., H. Heemers, and N. Sharifi, Androgen Signaling in Prostate Cancer. Cold Spring Harb Perspect Med, 2017. 7(9).
11. Glina, S., et al., Studies on prostatic cancer I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate by Charles Huggins and Clarence V. Hodges. J Sex Med, 2010. 7(2 Pt 1): p. 640-4.
12. Chuu, C.P., et al., Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci, 2011. 18(1): p. 63.
13. Ibrahim, T., et al., Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer, 2010. 116(6): p. 1406-18.
14. Keller, E.T., et al., Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev, 2001. 20(3-4): p. 333-49.
15. Bubendorf, L., et al., Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol, 2000. 31(5): p. 578-83.
16. Ku, S.Y., M.E. Gleave, and H. Beltran, Towards precision oncology in advanced prostate cancer. Nat Rev Urol, 2019. 16(11): p. 645-654.
17. Lee, D.J., et al., Novel therapeutics for the management of castration-resistant prostate cancer (CRPC). BJU Int, 2012. 109(7): p. 968-85.
18. Tannock, I.F., et al., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 2004. 351(15): p. 1502-12.
19. Mansinho, A., et al., Castration-Resistant Prostate Cancer: Mechanisms, Targets and Treatment. Adv Exp Med Biol, 2018. 1096: p. 117-133.
20. Mukherji, D., et al., Metastatic castration-resistant prostate cancer (CRPC): preclinical and clinical evidence for the sequential use of novel therapeutics. Cancer Metastasis Rev, 2014. 33(2-3): p. 555-66.
21. Massari, F., et al., Castration resistant prostate cancer (CRPC): state of the art, perspectives and new challenges. Anticancer Agents Med Chem, 2013. 13(6): p. 872-86.
22. Hwang, C., Overcoming docetaxel resistance in prostate cancer: a perspective review. Ther Adv Med Oncol, 2012. 4(6): p. 329-40.
23. van Oosterom, A.T., D. Schrijvers, and D. Schriivers, Docetaxel (Taxotere), a review of preclinical and clinical experience. Part II: Clinical experience. Anti-cancer drugs, 1995. 6(3): p. 356-368.
24. Trudeau, M.E., Docetaxel: a review of its pharmacology and clinical activity. Can J Oncol, 1996. 6(1): p. 443-57.
25. Pienta, K.J., Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol, 2001. 28(4 Suppl 15): p. 3-7.
26. Mackler, N.J. and K.J. Pienta, Drug insight: Use of docetaxel in prostate and urothelial cancers. Nat Clin Pract Urol, 2005. 2(2): p. 92-100; quiz 1 p following 112.
27. Ploussard, G., et al., Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res, 2010. 70(22): p. 9253-64.
28. Tseng, J.-C., et al., ROR2 suppresses metastasis of prostate cancer via regulation of miR-199a-5p–PIAS3–AKT2 signaling axis. Cell Death & Disease, 2020. 11(5): p. 376.
29. Tseng, J.C., et al., CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget, 2016. 7(25): p. 38010-38024.
30. Rojczyk, E., et al., Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. J Ethnopharmacol, 2020. 262: p. 113159.
31. Salatino, A., et al., Propolis research and the chemistry of plant products. Nat Prod Rep, 2011. 28(5): p. 925-36.
32. Wagh, V.D., Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci, 2013. 2013: p. 308249.
33. Wang, K., et al., Propolis from Different Geographic Origins Decreases Intestinal Inflammation and Bacteroides spp. Populations in a Model of DSS-Induced Colitis. Molecular Nutrition & Food Research, 2018. 62(17): p. 1800080.
34. Farag, M.R., et al., Propolis: Properties and composition, health benefits and applications in fish nutrition. Fish Shellfish Immunol, 2021. 115: p. 179-188.
35. Bobiş, O., Plants: Sources of Diversity in Propolis Properties. Plants (Basel), 2022. 11(17).
36. Tran, T.D., et al., Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int J Mol Sci, 2020. 21(14).
37. Anjum, S.I., et al., Composition and functional properties of propolis (bee glue): A review. Saudi J Biol Sci, 2019. 26(7): p. 1695-1703.
38. Forma, E. and M. Bryś, Anticancer Activity of Propolis and Its Compounds. Nutrients, 2021. 13(8).
39. Bankova, V., Recent trends and important developments in propolis research. Evidence-Based Complementary and Alternative Medicine, 2005. 2: p. 108379.
40. Ripari, N., et al., Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol, 2021. 73(3): p. 281-299.
41. Nattagh-Eshtivani, E., et al., Does propolis have any effect on rheumatoid arthritis? A review study. Food Sci Nutr, 2022. 10(4): p. 1003-1020.
42. Uddin, S., P.R. Brooks, and T.D. Tran, Chemical Characterization, α-Glucosidase, α-Amylase and Lipase Inhibitory Properties of the Australian Honey Bee Propolis. Foods, 2022. 11(13).
43. Frión-Herrera, Y., et al., The Cuban Propolis Component Nemorosone Inhibits Proliferation and Metastatic Properties of Human Colorectal Cancer Cells. Int J Mol Sci, 2020. 21(5).
44. Frión-Herrera, Y., et al., Chemosensitizing activity of Cuban propolis and nemorosone in doxorubicin resistant human colon carcinoma cells. Fitoterapia, 2019. 136: p. 104173.
45. Moise, A.R. and O. Bobiş, Baccharis dracunculifolia and Dalbergia ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Propolis. Plants (Basel), 2020. 9(11).
46. Silva, M.P., et al., Brazilian red propolis exhibits antiparasitic properties in vitro and reduces worm burden and egg production in an mouse model harboring either early or chronic Schistosoma mansoni infection. J Ethnopharmacol, 2021. 264: p. 113387.
47. Bloor, S.J. and K.A. Mitchell, Metabolic products of European-type propolis. Synthesis and analysis of glucuronides and sulfates. J Ethnopharmacol, 2021. 274: p. 114035.
48. Al-Ani, I., et al., Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines (Basel), 2018. 5(1).
49. Chien, Y.-H., et al., Antibacterial and Antioxidant Activity of the Fruit of Macaranga tanarius, the Plant Origin of Taiwanese Green Propolis. Antioxidants, 2022. 11: p. 1242.
50. Chen, Y.-W., et al., Antibacterial activity of propolins from Taiwanese green propolis. Journal of Food and Drug Analysis, 2018. 26(2): p. 761-768.
51. Chen, C.N., et al., Cytotoxic prenylflavanones from Taiwanese propolis. J Nat Prod, 2003. 66(4): p. 503-6.
52. Chen, Y.W., et al., Antibacterial activity of propolins from Taiwanese green propolis. J Food Drug Anal, 2018. 26(2): p. 761-768.
53. Kumazawa, S., et al., Analysis of antioxidant prenylflavonoids in different parts of Macaranga tanarius, the plant origin of Okinawan propolis. Asian Pac J Trop Med, 2014. 7(1): p. 16-20.
54. Lim, T.Y., Y.Y. Lim, and C.M. Yule, Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chemistry, 2009. 114: p. 594-599.
55. Chen, Y.-W., et al., Characterisation of Taiwanese propolis collected from different locations and seasons. Journal of the Science of Food and Agriculture, 2008. 88(3): p. 412-419.
56. Huang, W.-J., et al., Propolin G, a Prenylflavanone, Isolated from Taiwanese Propolis, Induces Caspase-Dependent Apoptosis in Brain Cancer Cells. Journal of Agricultural and Food Chemistry, 2007. 55(18): p. 7366-7376.
57. Pai, J.-T., et al., Propolin G-Suppressed Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells via Glycogen Synthase Kinase 3β-Mediated Snail and HDAC6-Regulated Vimentin Degradation. International Journal of Molecular Sciences, 2022. 23: p. 1672.
58. Chen, C.N., C.L. Wu, and J.K. Lin, Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwenese propolis. Cancer Lett, 2007. 245(1-2): p. 218-31.
59. Weng, M.-S., et al., Propolin H from Taiwanese Propolis Induces G1 Arrest in Human Lung Carcinoma Cells. Journal of Agricultural and Food Chemistry, 2007. 55(13): p. 5289-5298.
60. Pai, J.-T., et al., Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells. Evidence-Based Complementary and Alternative Medicine, 2018. 2018: p. 7202548.
61. Hsieh, C.Y., et al., Mechanistic insight into the attenuation of gouty inflammation by Taiwanese green propolis via inhibition of the NLRP3 inflammasome. J Cell Physiol, 2019. 234(4): p. 4081-4094.
62. Zheng, M., et al., Total glucosides of paeony (TGP) extracted from Radix Paeoniae Alba exerts neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the cAMP/PKA/CREB signaling pathway. J Ethnopharmacol, 2019. 245: p. 112182.
63. Chen, L.H., et al., Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet. Nutrients, 2018. 10(4).
64. Atkin-Smith, G.K., et al., A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun, 2015. 6: p. 7439.
65. Castanier, C. and D. Arnoult, [Mitochondrial dynamics during apoptosis]. Med Sci (Paris), 2010. 26(10): p. 830-5.
66. Ow, Y.P., et al., Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol, 2008. 9(7): p. 532-42.
67. Kalpage, H.A., et al., Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. Faseb j, 2019. 33(2): p. 1540-1553.
68. Porter, A.G. and R.U. Jänicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999. 6(2): p. 99-104.
69. Araya, L.E., et al., Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem Biol, 2021. 16(11): p. 2280-2296.
70. Cohausz, O. and F.R. Althaus, Role of PARP-1 and PARP-2 in the expression of apoptosis-regulating genes in HeLa cells. Cell Biol Toxicol, 2009. 25(4): p. 379-91.
71. Boulares, A.H., et al., Role of Poly(ADP-ribose) Polymerase (PARP) Cleavage in Apoptosis: CASPASE 3-RESISTANT PARP MUTANT INCREASES RATES OF APOPTOSIS IN TRANSFECTED CELLS*. Journal of Biological Chemistry, 1999. 274(33): p. 22932-22940.
72. Zhou, H., et al., Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol, 2000. 151(3): p. 483-94.
73. Datta, S.R., A. Brunet, and M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev, 1999. 13(22): p. 2905-27.
74. Certo, M., et al., Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006. 9(5): p. 351-65.
75. Zheng, C., et al., Role of BCL-2 Family Proteins in Apoptosis and its Regulation by Nutrients. Curr Protein Pept Sci, 2020. 21(8): p. 799-806.
76. Deng, J., et al., BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell, 2007. 12(2): p. 171-85.
77. Shoemaker, A.R., et al., Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res, 2008. 14(11): p. 3268-77.
78. Tahir, S.K., et al., Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res, 2007. 67(3): p. 1176-83.
79. Stolz, C., et al., Targeting Bcl-2 family proteins modulates the sensitivity of B-cell lymphoma to rituximab-induced apoptosis. Blood, 2008. 112(8): p. 3312-21.
80. Reed, J.C., Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood, 2008. 111(7): p. 3322-30.
|