參考文獻 |
References
Acevedo, S. F., & Raber, J. (2011). Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice. Brain Res, 1393, 23-30. https://doi.org/10.1016/j.brainres.2011.03.070
Adinoff, B. (2004). Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry, 12(6), 305-320. https://doi.org/10.1080/10673220490910844
Aston-Jones, G., Smith, R. J., Moorman, D. E., & Richardson, K. A. (2009). Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 56 Suppl 1(Suppl 1), 112-121. https://doi.org/10.1016/j.neuropharm.2008.06.060
Baumans, V. (2005). Environmental enrichment for laboratory rodents and rabbits: requirements of rodents, rabbits, and research. ILAR. J, 46(2), 162-170. http://www.ncbi.nlm.nih.gov/pubmed/15775025
Bechara, R. G., & Kelly, A. M. (2013). Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav Brain Res, 245, 96-100. https://doi.org/10.1016/j.bbr.2013.02.018
Beck, C. H. M., & Fibiger, H. C. (1995). Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: With and without diazepam pretreatment. The Journal of Neuroscience, 15(1), 709-720.
Bekinschtein, P., Oomen, C. A., Saksida, L. M., & Bussey, T. J. (2011). Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol, 22(5), 536-542. https://doi.org/S1084-9521(11)00088-7 [pii];10.1016/j.semcdb.2011.07.002 [doi]
Bennett, E. L., Rosenzweig, M. R., & Diamond, M. C. (1969). Rat brain: effects of environmental enrichment on wet and dry weights. Science, 163(3869), 825-826. https://doi.org/10.1126/science.163.3869.825
Bezard, E., Dovero, S., Belin, D., Duconger, S., Jackson-Lewis, V., Przedborski, S., Piazza, P. V., Gross, C. E., & Jaber, M. (2003). Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci, 23(35), 10999-11007. https://doi.org/10.1523/JNEUROSCI.23-35-10999.2003
Birch, A. M., McGarry, N. B., & Kelly, A. M. (2013). Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus, 23(6), 437-450. https://doi.org/10.1002/hipo.22103
Brenes, J. C., Lackinger, M., Hoglinger, G. U., Schratt, G., Schwarting, R. K., & Wohr, M. (2016). Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats. J Comp Neurol, 524(8), 1586-1607. https://doi.org/10.1002/cne.23842
Buttner, A. (2011). Review: The neuropathology of drug abuse. Neuropathol Appl Neurobiol, 37(2), 118-134. https://doi.org/10.1111/j.1365-2990.2010.01131.x
Cadoni, C., Solinas, M., & Di Chiara, G. (2000). Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur J Pharmacol, 388(1), 69-76. https://doi.org/10.1016/s0014-2999(99)00824-9
Cadoni, C., Solinas, M., Valentini, V., & Di Chiara, G. (2003). Selective psychostimulant sensitization by food restriction: differential changes in accumbens shell and core dopamine. Eur J Neurosci, 18(8), 2326-2334. https://doi.org/10.1046/j.1460-9568.2003.02941.x
Carlsson, A. (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1(3), 179-186. http://research.bmn.com/medline/search/record?uid=MDLN.89286857
Cowansage, K. K., LeDoux, J. E., & Monfils, M. H. (2010). Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr. Mol. Pharmacol, 3(1), 12-29. https://doi.org/EPub-Abstract-CMP-03 [pii]
Darwin, C. (1859). The origin of species and the descent of man. Modern Library.
Decker, S., Grider, G., Cobb, M., Li, X. P., Huff, M. O., El-Mallakh, R. S., & Levy, R. S. (2000). Open field is more sensitive than automated activity monitor in documenting ouabain-induced hyperlocomotion in the development of an animal model for bipolar illness. Prog. Neuropsychopharmacol. Biol. Psychiatry, 24(3), 455-462. http://www.ncbi.nlm.nih.gov/pubmed/10836492
Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. U. S. A, 85(14), 5274-5278. http://www.ncbi.nlm.nih.gov/pubmed/2899326
Diamond, M. C., Law, F., Rhodes, H., Lindner, B., Rosenzweig, M. R., Krech, D., & Bennett, E. L. (1966). Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol, 128(1), 117-126. https://doi.org/10.1002/cne.901280110
El Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., & Solinas, M. (2009). Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology (Berl), 203(3), 561-570. https://doi.org/10.1007/s00213-008-1402-6
Ferreira, S., Soares, L. M., Lira, C. R., Yokoyama, T. S., Engi, S. A., Cruz, F. C., & Leao, R. M. (2021). Ethanol-induced locomotor sensitization: Neuronal activation in the nucleus accumbens and medial prefrontal cortex. Neurosci Lett, 749, 135745. https://doi.org/10.1016/j.neulet.2021.135745
Fibiger, H. C., & Phillips, A. G. (1988). Mesocorticolimbic dopamine systems and reward. Annals of New York Academy of Sciences, 537, 206-215.
Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci, 22(18), 7840-7843. http://www.ncbi.nlm.nih.gov/pubmed/12223535 (Not in File)
Fukushiro, D. F., Josino, F. S., Saito, L. P., Costa, J. M., Zanlorenci, L. H., Berro, L. F., Fernandes-Santos, L., Morgado, F., Mari-Kawamoto, E., & Frussa-Filho, R. (2012). Differential effects of intermittent and continuous exposure to novel environmental stimuli on the development of amphetamine-induced behavioral sensitization in mice: implications for addiction. Drug Alcohol Depend, 124(1-2), 135-141. https://doi.org/10.1016/j.drugalcdep.2011.12.026
Gergerlioglu, H. S., Oz, M., Demir, E. A., Nurullahoglu-Atalik, K. E., & Yerlikaya, F. H. (2016). Environmental enrichment reverses cognitive impairments provoked by Western diet in rats: Role of corticosteroid receptors. Life Sci, 148, 279-285. https://doi.org/10.1016/j.lfs.2016.02.011
Giorgi, O., Piras, G., Lecca, D., & Corda, M. G. (2005). Behavioural effects of acute and repeated cocaine treatments: a comparative study in sensitisation-prone RHA rats and their sensitisation-resistant RLA counterparts. Psychopharmacology (Berl), 180(3), 530-538. http://www.ncbi.nlm.nih.gov/pubmed/15772864
Girbovan, C., & Plamondon, H. (2013). Environmental enrichment in female rodents: considerations in the effects on behavior and biochemical markers. Behav Brain Res, 253, 178-190. https://doi.org/10.1016/j.bbr.2013.07.018
Green, T. A., Alibhai, I. N., Roybal, C. N., Winstanley, C. A., Theobald, D. E., Birnbaum, S. G., Graham, A. R., Unterberg, S., Graham, D. L., Vialou, V., Bass, C. E., Terwilliger, E. F., Bardo, M. T., & Nestler, E. J. (2010). Environmental enrichment produces a behavioral phenotype mediated by low cyclic adenosine monophosphate response element binding (CREB) activity in the nucleus accumbens. Biol Psychiatry, 67(1), 28-35. https://doi.org/10.1016/j.biopsych.2009.06.022
Hamilton, G. F., Jablonski, S. A., Schiffino, F. L., St Cyr, S. A., Stanton, M. E., & Klintsova, A. Y. (2014). Exercise and environment as an intervention for neonatal alcohol effects on hippocampal adult neurogenesis and learning. Neuroscience, 265, 274-290. https://doi.org/10.1016/j.neuroscience.2014.01.061
Hamilton, K. R., Elliott, B. M., Berger, S. S., & Grunberg, N. E. (2014). Environmental enrichment attenuates nicotine behavioral sensitization in male and female rats. Exp Clin Psychopharmacol, 22(4), 356-363. https://doi.org/10.1037/a0037205
Hammami-Abrand Abadi, A., Miladi-Gorji, H., & Bigdeli, I. (2016). Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphine-dependent and morphine-withdrawn rats. Behav Pharmacol, 27(2-3 Spec Issue), 270-278. https://doi.org/10.1097/FBP.0000000000000197
Hebb, D. O. (1949). The effects of early experience on problem-solving at maturity. American Psychologist 2.
Hellemans, K. G., Benge, L. C., & Olmstead, M. C. (2004). Adolescent enrichment partially reverses the social isolation syndrome. Brain Res Dev Brain Res, 150(2), 103-115. https://doi.org/10.1016/j.devbrainres.2004.03.003
Huang, F. L., Huang, K. P., & Boucheron, C. (2007). Long-term enrichment enhances the cognitive behavior of the aging neurogranin null mice without affecting their hippocampal LTP. Learn Mem, 14(8), 512-519. https://doi.org/10.1101/lm.636107
Hurley, S. W., & Carelli, R. M. (2020). Activation of Infralimbic to Nucleus Accumbens Shell Pathway Suppresses Conditioned Aversion in Male But Not Female Rats. J Neurosci, 40(36), 6888-6895. https://doi.org/10.1523/JNEUROSCI.0137-20.2020
Huzard, D., Mumby, D. G., Sandi, C., Poirier, G. L., & van der Kooij, M. A. (2015). The effects of extrinsic stress on somatic markers and behavior are dependent on animal housing conditions. Physiol Behav, 151, 238-245. https://doi.org/10.1016/j.physbeh.2015.07.018
Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., & Lindsay, R. M. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350(6315), 230-232. https://doi.org/10.1038/350230a0
Ji, M. H., Wang, Z. Y., Sun, X. R., Tang, H., Zhang, H., Jia, M., Qiu, L. L., Zhang, G. F., Peng, Y. G., & Yang, J. J. (2017). Repeated Neonatal Sevoflurane Exposure-Induced Developmental Delays of Parvalbumin Interneurons and Cognitive Impairments Are Reversed by Environmental Enrichment. Mol Neurobiol, 54(5), 3759-3770. https://doi.org/10.1007/s12035-016-9943-x
Kim, M. S., Yu, J. H., Kim, C. H., Choi, J. Y., Seo, J. H., Lee, M. Y., Yi, C. H., Choi, T. H., Ryu, Y. H., Lee, J. E., Lee, B. H., Kim, H., & Cho, S. R. (2016). Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J Cereb Blood Flow Metab, 36(12), 2122-2133. https://doi.org/10.1177/0271678X15613525
Laviola, G., Hannan, A. J., Macri, S., Solinas, M., & Jaber, M. (2008). Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis, 31(2), 159-168. https://doi.org/10.1016/j.nbd.2008.05.001
Lewis, M. H. (2004). Environmental complexity and central nervous system development and function. Ment. Retard. Dev. Disabil. Res. Rev, 10(2), 91-95. https://doi.org/10.1002/mrdd.20017 [doi]
Marques, J. M., & Olsson, I. A. (2007). The effect of preweaning and postweaning housing on the behaviour of the laboratory mouse (Mus musculus). Laboratory Animals, 41, 92-102.
Miller, C. A., & Marshall, J. F. (2005). Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur. J. Neurosci, 21(5), 1385-1393. http://www.ncbi.nlm.nih.gov/pubmed/15813948
Mora-Gallegos, A., Rojas-Carvajal, M., Salas, S., Saborio-Arce, A., Fornaguera-Trias, J., & Brenes, J. C. (2015). Age-dependent effects of environmental enrichment on spatial memory and neurochemistry. Neurobiol Learn Mem, 118, 96-104. https://doi.org/10.1016/j.nlm.2014.11.012
Nag, N., Moriuchi, J. M., Peitzman, C. G., Ward, B. C., Kolodny, N. H., & Berger-Sweeney, J. E. (2009). Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res, 196(1), 44-48. https://doi.org/10.1016/j.bbr.2008.07.008
Nett, K. E., Zimbelman, A. R., McGregor, M. S., Alizo Vera, V., Harris, M., & LaLumiere, R. T. (2023). Infralimbic projections to the nucleus accumbens shell and amygdala regulate the encoding of cocaine extinction learning. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2023-22.2022
Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci, 7(9), 697-709. https://doi.org/10.1038/nrn1970
Nordquist, R. E., Vanderschuren, L. J., Jonker, A. J., Bergsma, M., de Vries, T. J., Pennartz, C. M., & Voorn, P. (2008). Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core. Psychopharmacology (Berl), 198(1), 113-126. https://doi.org/10.1007/s00213-008-1100-4
Oades, R. D., & Halliday, G. M. (1987). Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res, 434(2), 117-165. http://research.bmn.com/medline/search/record?uid=MDLN.87215201
Olsson, I. A., & Dahlborn, K. (2002). Improving housing conditions for laboratory mice: a review of "environmental enrichment". Lab Anim, 36(3), 243-270. http://www.ncbi.nlm.nih.gov/pubmed/12144738
Pavkovic, Z., Smiljanic, K., Kanazir, S., Milanovic, D., Pesic, V., & Ruzdijic, S. (2017). Brain molecular changes and behavioral alterations induced by propofol anesthesia exposure in peripubertal rats. Paediatr Anaesth, 27(9), 962-972. https://doi.org/10.1111/pan.13182
Peleg-Raibstein, D., Yee, B. K., Feldon, J., & Hauser, J. (2009). The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms? Psychopharmacology (Berl), 206(4), 603-621. https://doi.org/10.1007/s00213-009-1514-7 [doi]
Peters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci, 28(23), 6046-6053. https://doi.org/10.1523/JNEUROSCI.1045-08.2008
Pierce, R. C., & Kalivas, P. W. (1995). Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J Pharmacol Exp Ther, 275(2), 1019-1029. https://www.ncbi.nlm.nih.gov/pubmed/7473128
Pierce, R. C., & Kalivas, P. W. (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Research Reviews, 25, 192-216.
Puhl, M. D., Blum, J. S., Acosta-Torres, S., & Grigson, P. S. (2012). Environmental enrichment protects against the acquisition of cocaine self-administration in adult male rats, but does not eliminate avoidance of a drug-associated saccharin cue. Behav. Pharmacol, 23(1), 43-53. https://doi.org/10.1097/FBP.0b013e32834eb060 [doi]
Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res, 396(2), 157-198. http://www.ncbi.nlm.nih.gov/pubmed/3527341
Robinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci, 363(1507), 3137-3146. https://doi.org/10.1098/rstb.2008.0093
Robinson, T. E., & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47 Suppl 1, 33-46. http://www.ncbi.nlm.nih.gov/pubmed/15464124
Rosenzweig, M. R., & Bennett, E. L. (1969). Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev Psychobiol, 2(2), 87-95. https://doi.org/10.1002/dev.420020208
Rueda, A. V., Teixeira, A. M., Yonamine, M., & Camarini, R. (2012). Environmental enrichment blocks ethanol-induced locomotor sensitization and decreases BDNF levels in the prefrontal cortex in mice. Addict. Biol, 17(4), 736-745. https://doi.org/10.1111/j.1369-1600.2011.00408.x [doi]
Sakalem, M. E., Seidenbecher, T., Zhang, M., Saffari, R., Kravchenko, M., Wordemann, S., Diederich, K., Schwamborn, J. C., Zhang, W., & Ambree, O. (2017). Environmental enrichment and physical exercise revert behavioral and electrophysiological impairments caused by reduced adult neurogenesis. Hippocampus, 27(1), 36-51. https://doi.org/10.1002/hipo.22669
Segovia, G., del Arco, A., & Mora, F. (2009). Environmental enrichment, prefrontal cortex, stress, and aging of the brain. J Neural Transm (Vienna), 116(8), 1007-1016. https://doi.org/10.1007/s00702-009-0214-0
Solinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Prog. Neurobiol, 92(4), 572-592. https://doi.org/S0301-0082(10)00145-0 [pii];10.1016/j.pneurobio.2010.08.002 [doi]
Solinas, M., Thiriet, N., El, R. R., Lardeux, V., & Jaber, M. (2009). Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology, 34(5), 1102-1111. https://doi.org/npp200851 [pii];10.1038/npp.2008.51 [doi]
Takahashi, T., Shimizu, K., Shimazaki, K., Toda, H., & Nibuya, M. (2014). Environmental enrichment enhances autophagy signaling in the rat hippocampus. Brain Res, 1592, 113-123. https://doi.org/S0006-8993(14)01428-0 [pii];10.1016/j.brainres.2014.10.026 [doi]
Thanos, P. K., Hamilton, J., O′Rourke, J. R., Napoli, A., Febo, M., Volkow, N. D., Blum, K., & Gold, M. (2016). Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget, 7(15), 19111-19123. https://doi.org/10.18632/oncotarget.8088
Thiel, K. J., Sanabria, F., Pentkowski, N. S., & Neisewander, J. L. (2009). Anti-craving effects of environmental enrichment. Int. J. Neuropsychopharmacol, 12(9), 1151-1156. https://doi.org/S1461145709990472 [pii];10.1017/S1461145709990472 [doi]
Tian, J., Yan, Y., Xi, W., Zhou, R., Lou, H., Duan, S., Chen, J. F., & Zhang, B. (2018). Optogenetic Stimulation of GABAergic Neurons in the Globus Pallidus Produces Hyperkinesia. Front Behav Neurosci, 12, 185. https://doi.org/10.3389/fnbeh.2018.00185
van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nat Rev Neurosci, 1(3), 191-198. https://doi.org/10.1038/35044558
Vecchiola, A., Collyer, P., Figueroa, R., Labarca, R., Bustos, G., & Magendzo, K. (1999). Differential regulation of mu-opioid receptor mRNA in the nucleus accumbens shell and core accompanying amphetamine behavioral sensitization. Brain Res Mol Brain Res, 69(1), 1-9. https://doi.org/10.1016/s0169-328x(99)00044-3
Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev, 27(8), 827-839. https://doi.org/10.1016/j.neubiorev.2003.11.001 [doi];S0149763403001398 [pii]
Wagner, A. K., Chen, X., Kline, A. E., Li, Y., Zafonte, R. D., & Dixon, C. E. (2005). Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury. Exp Neurol, 195(2), 475-483. https://doi.org/10.1016/j.expneurol.2005.06.009
Wise, R. A. (2008). Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res, 14(2-3), 169-183. https://doi.org/10.1007/BF03033808 [doi]
Wise, R. A. (2009). Roles for nigrostriatal--not just mesocorticolimbic--dopamine in reward and addiction. Trends Neurosci, 32(10), 517-524. https://doi.org/S0166-2236(09)00132-5 [pii];10.1016/j.tins.2009.06.004 [doi]
Young, D., Lawlor, P. A., Leone, P., Dragunow, M., & During, M. J. (1999). Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med, 5(4), 448-453. https://doi.org/10.1038/7449
Zhu, J., Green, T., Bardo, M. T., & Dwoskin, L. P. (2004). Environmental enrichment enhances sensitization to GBR 12935-induced activity and decreases dopamine transporter function in the medial prefrontal cortex. Behav Brain Res, 148(1-2), 107-117. https://doi.org/10.1016/s0166-4328(03)00190-6
|