參考文獻 |
1. Woese, C.R., Olsen, G.J., Ibba, M. and Söll, D. (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev, 64, 202-236.
2. Yadavalli, S.S. and Ibba, M. (2012) Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv Protein Chem Struct Biol, 86, 1-43.
3. Rubio Gomez, M.A. and Ibba, M. (2020) Aminoacyl-tRNA synthetases. Rna, 26, 910-936.
4. Yadavalli, S.S. and Ibba, M. (2012) In Marintchev, A. (ed.), Advances in Protein Chemistry and Structural Biology. Academic Press, Vol. 86, pp. 1-43.
5. Carter, C.W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem, 62, 715-748.
6. O′Donoghue, P. and Luthey-Schulten, Z. (2003) On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev, 67, 550-573.
7. Burbaum, J.J. and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem, 266, 16965-16968.
8. Chang, C.P., Tseng, Y.K., Ko, C.Y. and Wang, C.C. (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res, 40, 314-322.
9. Kuhle, B., Chihade, J. and Schimmel, P. (2020) Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nat Commun, 11, 969.
10. Chihade, J.W., Hayashibara, K., Shiba, K. and Schimmel, P. (1998) Strong selective pressure to use G:U to mark an RNA acceptor stem for alanine. Biochemistry, 37, 9193-9202.
11. Natsoulis, G., Hilger, F. and Fink, G.R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell, 46, 235-243.
12. Lee, Y.H., Lo, Y.T., Chang, C.P., Yeh, C.S., Chang, T.H., Chen, Y.W., Tseng, Y.K. and Wang, C.C. (2019) Naturally occurring dual recognition of tRNA(His) substrates with and without a universal identity element. RNA Biol, 16, 1275-1285.
13. Guo, M., Yang, X.L. and Schimmel, P. (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 11, 668-674.
14. Naganuma, M., Sekine, S., Fukunaga, R. and Yokoyama, S. (2009) Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proc Natl Acad Sci U S A, 106, 8489-8494.
15. Beebe, K., Mock, M., Merriman, E. and Schimmel, P. (2008) Distinct domains of tRNA synthetase recognize the same base pair. Nature, 451, 90-93.
16. Guo, M., Chong, Y.E., Beebe, K., Shapiro, R., Yang, X.L. and Schimmel, P. (2009) The C-Ala domain brings together editing and aminoacylation functions on one tRNA. Science, 325, 744-747.
17. Sun, L., Song, Y., Blocquel, D., Yang, X.L. and Schimmel, P. (2016) Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc Natl Acad Sci U S A, 113, 14300-14305.
18. Asahara, H., Himeno, H., Tamura, K., Hasegawa, T., Watanabe, K. and Shimizu, M. (1993) Recognition nucleotides of Escherichia coli tRNA(Leu) and its elements facilitating discrimination from tRNASer and tRNA(Tyr). J Mol Biol, 231, 219-229.
19. Dock-Bregeon, A.C., Garcia, A., Giegé, R. and Moras, D. (1990) The contacts of yeast tRNA(Ser) with seryl-tRNA synthetase studied by footprinting experiments. Eur J Biochem, 188, 283-290.
20. Ontiveros, R.J., Stoute, J. and Liu, K.F. (2019) The chemical diversity of RNA modifications. Biochem J, 476, 1227-1245.
21. Francklyn, C. and Schimmel, P. (1989) Aminoacylation of RNA minihelices with alanine. Nature, 337, 478-481.
22. Shi, J.P., Martinis, S.A. and Schimmel, P. (1992) RNA tetraloops as minimalist substrates for aminoacylation. Biochemistry, 31, 4931-4936.
23. Musier-Forsyth, K., Usman, N., Scaringe, S., Doudna, J., Green, R. and Schimmel, P. (1991) Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science, 253, 784-786.
24. Hou, Y.M. and Schimmel, P. (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 140-145.
25. McClain, W.H. and Foss, K. (1988) Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′ acceptor end. Science, 240, 793-796.
26. Hou, Y.M. and Schimmel, P. (1989) Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry, 28, 6800-6804.
27. Giegé, R. (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol, 15, 1007-1014.
28. Naganuma, M., Sekine, S., Chong, Y.E., Guo, M., Yang, X.L., Gamper, H., Hou, Y.M., Schimmel, P. and Yokoyama, S. (2014) The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature, 510, 507-511.
29. Sun, L., Gomes, A.C., He, W., Zhou, H., Wang, X., Pan, D.W., Schimmel, P., Pan, T. and Yang, X.-L. (2016) Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. Journal of the American Chemical Society, 138, 12948-12955.
30. Chong, Y.E., Guo, M., Yang, X.L., Kuhle, B., Naganuma, M., Sekine, S.I., Yokoyama, S. and Schimmel, P. (2018) Distinct ways of G:U recognition by conserved tRNA binding motifs. Proc Natl Acad Sci U S A, 115, 7527-7532.
31. Fukunaga, R. and Yokoyama, S. (2007) Crystallization and preliminary X-ray crystallographic study of alanyl-tRNA synthetase from the archaeon Archaeoglobus fulgidus. Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 224-228.
32. Antika, T.R., Chrestella, D.J., Ivanesthi, I.R., Rida, G.R.N., Chen, K.Y., Liu, F.G., Lee, Y.C., Chen, Y.W., Tseng, Y.K. and Wang, C.C. (2022) Gain of C-Ala enables AlaRS to target the L-shaped tRNAAla. Nucleic Acids Res, 50, 2190-2200.
33. Chang, C.P., Lin, G., Chen, S.J., Chiu, W.C., Chen, W.H. and Wang, C.C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem, 283, 30699-30706.
34. Chang, K.J. and Wang, C.C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem, 279, 13778-13785.
35. Tang, H.L., Yeh, L.S., Chen, N.K., Ripmaster, T., Schimmel, P. and Wang, C.C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem, 279, 49656-49663.
36. Fersht, A.R., Ashford, J.S., Bruton, C.J., Jakes, R., Koch, G.L. and Hartley, B.S. (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry, 14, 1-4.
37. Levi, O. and Arava, Y. (2019) mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol, 17, e3000274.
38. Huang, H.Y., Kuei, Y., Chao, H.Y., Chen, S.J., Yeh, L.S. and Wang, C.C. (2006) Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J Biol Chem, 281, 31430-31439.
39. Zhang, H., Wu, J., Lyu, Z. and Ling, J. (2021) Impact of alanyl-tRNA synthetase editing deficiency in yeast. Nucleic Acids Res, 49, 9953-9964.
40. Jones, D.T., Taylor, W.R. and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 8, 275-282.
41. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35, 1547-1549.
42. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
43. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A. et al. (2021) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50, D439-D444.
44. Reynolds, C.R., Islam, S.A. and Sternberg, M.J.E. (2018) EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures. J Mol Biol, 430, 2244-2248.
45. Gregoire, C.J., Gautheret, D. and Loret, E.P. (1997) No tRNA3Lys unwinding in a complex with HIV NCp7. J Biol Chem, 272, 25143-25148.
46. Barends, S., Björk, K., Gultyaev, A.P., de Smit, M.H., Pleij, C.W. and Kraal, B. (2002) Functional evidence for D- and T-loop interactions in tmRNA. FEBS Lett, 514, 78-83.
47. Li, H., Zhu, D., Wu, J., Ma, Y., Cai, C., Chen, Y., Qin, M. and Dai, H. (2021) New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol, 18, 2531-2545.
48. Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A. and Bonvin, A. (2021) Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front Mol Biosci, 8, 729513.
49. van Zundert, G.C.P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries, S.J. and Bonvin, A. (2016) The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J Mol Biol, 428, 720-725.
50. Lorenz, C., Lünse, C.E. and Mörl, M. (2017) tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules, 7.
51. Putney, S.D. and Schimmel, P. (1981) An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature, 291, 632-635.
52. Lo, W.S., Gardiner, E., Xu, Z., Lau, C.F., Wang, F., Zhou, J.J., Mendlein, J.D., Nangle, L.A., Chiang, K.P., Yang, X.L. et al. (2014) Human tRNA synthetase catalytic nulls with diverse functions. Science, 345, 328-332.
53. Palencia, A., Crépin, T., Vu, M.T., Lincecum, T.L., Jr., Martinis, S.A. and Cusack, S. (2012) Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol, 19, 677-684.
54. Shimada, A., Nureki, O., Goto, M., Takahashi, S. and Yokoyama, S. (2001) Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase. Proc Natl Acad Sci U S A, 98, 13537-13542.
55. Morales, A.J., Swairjo, M.A. and Schimmel, P. (1999) Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. Embo j, 18, 3475-3483.
56. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M. and Hurt, E.C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. Embo j, 15, 5437-5448.
57. Teramoto, T., Kaitany, K.J., Kakuta, Y., Kimura, M., Fierke, C.A. and Hall, Traci M T. (2020) Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA. Nucleic Acids Research, 48, 11815-11826.
58. Zhang, J. and Ferré-D′Amaré, A.R. (2016) The tRNA Elbow in Structure, Recognition and Evolution. Life (Basel), 6.
59. Jasin, M., Regan, L. and Schimmel, P. (1983) Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature, 306, 441-447.
60. Arutaki, M., Kurihara, R., Matsuoka, T., Inami, A., Tokunaga, K., Ohno, T., Takahashi, H., Takano, H., Ando, T., Mutsuro-Aoki, H. et al. (2020) G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases. J Mol Evol, 88, 501-509.
61. Claverie, J.M. and Abergel, C. (2018) Mimiviridae: An Expanding Family of Highly Diverse Large dsDNA Viruses Infecting a Wide Phylogenetic Range of Aquatic Eukaryotes. Viruses, 10.
62. Abrahao, J., Silva, L., Silva, L.S., Khalil, J.Y.B., Rodrigues, R., Arantes, T., Assis, F., Boratto, P., Andrade, M., Kroon, E.G. et al. (2018) Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun, 9, 749.
63. Oliveira, G., La Scola, B. and Abrahao, J. (2019) Giant virus vs amoeba: fight for supremacy. Virol J, 16, 126.
64. Ryder, S.P., Recht, M.I. and Williamson, J.R. (2008) Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol Biol, 488, 99-115.
65. Francklyn, C. and Schimmel, P. (1989) Aminoacylation of RNA minihelices with alanine. Nature, 337, 478-481.
66. Le, S.Q. and Gascuel, O. (2008) An improved general amino acid replacement matrix. Mol Biol Evol, 25, 1307-1320.
67. Tamura, K., Stecher, G. and Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol, 38, 3022-3027.
68. Lovato, M.A., Chihade, J.W. and Schimmel, P. (2001) Translocation within the acceptor helix of a major tRNA identity determinant. Embo j, 20, 4846-4853.
69. Wakasugi, K., Quinn, C.L., Tao, N. and Schimmel, P. (1998) Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant. The EMBO Journal, 17, 297-305.
70. Beuning, P.J., Gulotta, M. and Musier-Forsyth, K. (1997) Atomic Group “Mutagenesis” Reveals Major Groove Fine Interactions of a tRNA Synthetase with an RNA Helix. Journal of the American Chemical Society, 119, 8397-8402.
71. Davis, M.W., Buechter, D.D. and Schimmel, P.R. (1994) Functional dissection of a predicted class-defining motif in a class II tRNA synthetase of unknown structure. Biochemistry, 33 33, 9904-9911.
72. Swairjo, M.A., Otero, F.J., Yang, X.L., Lovato, M.A., Skene, R.J., McRee, D.E., Ribas de Pouplana, L. and Schimmel, P. (2004) Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Mol Cell, 13, 829-841.
73. Miller, W.T., Hou, Y.M. and Schimmel, P. (1991) Mutant aminoacyl-tRNA synthetase that compensates for a mutation in the major identity determinant of its tRNA. Biochemistry, 30, 2635-2641.
74. Brandes, N. and Linial, M. (2019) Giant Viruses-Big Surprises. Viruses, 11.
75. Abergel, C., Rudinger-Thirion, J., Giege, R. and Claverie, J.M. (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol, 81, 12406-12417.
76. Yamada, T., Onimatsu, H. and Van Etten, J.L. (2006) Chlorella viruses. Adv Virus Res, 66, 293-336.
77. Schimmel, P., Giegé, R., Moras, D. and Yokoyama, S. (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A, 90, 8763-8768.
78. Hopper, A.K. and Phizicky, E.M. (2003) tRNA transfers to the limelight. Genes Dev, 17, 162-180.
79. Kufel, J. and Tollervey, D. (2003) 3′-processing of yeast tRNATrp precedes 5′-processing. Rna, 9, 202-208.
80. Orellana, O., Cooley, L. and Soll, D. (1986) The additional guanylate at the 5′ terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Mol Cell Biol, 6, 525-529.
81. Wang, C., Sobral, B.W. and Williams, K.P. (2007) Loss of a universal tRNA feature. J Bacteriol, 189, 1954-1962.
82. Gu, W., Jackman, J.E., Lohan, A.J., Gray, M.W. and Phizicky, E.M. (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev, 17, 2889-2901.
83. Rosen, A.E. and Musier-Forsyth, K. (2004) Recognition of G-1:C73 atomic groups by Escherichia coli histidyl-tRNA synthetase. J Am Chem Soc, 126, 64-65.
84. Connolly, S.A., Rosen, A.E., Musier-Forsyth, K. and Francklyn, C.S. (2004) G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry, 43, 962-969.
85. Rudinger, J., Florentz, C. and Giegé, R. (1994) Histidylation by yeast HisRS of tRNA or tRNA-like structure relies on residues -1 and 73 but is dependent on the RNA context. Nucleic Acids Res, 22, 5031-5037.
86. Himeno, H., Hasegawa, T., Ueda, T., Watanabe, K., Miura, K. and Shimizu, M. (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res, 17, 7855-7863.
87. Preston, M.A. and Phizicky, E.M. (2010) The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. Rna, 16, 1068-1077.
88. Gu, W., Hurto, R.L., Hopper, A.K., Grayhack, E.J. and Phizicky, E.M. (2005) Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Mol Cell Biol, 25, 8191-8201.
89. Heinemann, I.U., O′Donoghue, P., Madinger, C., Benner, J., Randau, L., Noren, C.J. and Söll, D. (2009) The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution. Proc Natl Acad Sci U S A, 106, 21103-21108.
90. Heinemann, I.U., Nakamura, A., O′Donoghue, P., Eiler, D. and Söll, D. (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res, 40, 333-344.
91. Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet, 15, 57-61.
92. Maréchal-Drouard, L., Kumar, R., Remacle, C. and Small, I. (1996) RNA editing of larch mitochondrial tRNA(His) precursors is a prerequisite for processing. Nucleic Acids Res, 24, 3229-3234.
93. Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K. and Ohyama, K. (1992) Transfer RNA genes in the mitochondrial genome from a liverwort, Marchantia polymorpha: the absence of chloroplast-like tRNAs. Nucleic Acids Res, 20, 3773-3777.
94. Jackman, J.E. and Phizicky, E.M. (2006) tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G-1 addition. Proc Natl Acad Sci U S A, 103, 8640-8645.
95. Abad, M.G., Rao, B.S. and Jackman, J.E. (2010) Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A, 107, 674-679.
96. Abad, M.G., Long, Y., Willcox, A., Gott, J.M., Gray, M.W. and Jackman, J.E. (2011) A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. Rna, 17, 613-623.
97. Heinemann, I.U., Randau, L., Tomko, R.J., Jr. and Söll, D. (2010) 3′-5′ tRNAHis guanylyltransferase in bacteria. FEBS Lett, 584, 3567-3572.
98. Hyde, S.J., Eckenroth, B.E., Smith, B.A., Eberley, W.A., Heintz, N.H., Jackman, J.E. and Doublié, S. (2010) tRNA(His) guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proc Natl Acad Sci U S A, 107, 20305-20310.
99. Rao, B.S., Maris, E.L. and Jackman, J.E. (2011) tRNA 5′-end repair activities of tRNAHis guanylyltransferase (Thg1)-like proteins from Bacteria and Archaea. Nucleic Acids Res, 39, 1833-1842.
100. Nakamura, A., Nemoto, T., Heinemann, I.U., Yamashita, K., Sonoda, T., Komoda, K., Tanaka, I., Söll, D. and Yao, M. (2013) Structural basis of reverse nucleotide polymerization. Proc Natl Acad Sci U S A, 110, 20970-20975.
101. Doublié, S., Tabor, S., Long, A.M., Richardson, C.C. and Ellenberger, T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391, 251-258.
102. Nakamura, A., Wang, D. and Komatsu, Y. (2018) Biochemical analysis of human tRNAHis guanylyltransferase in mitochondrial tRNAHis maturation. Biochem Biophys Res Commun, 503, 2015-2021.
103. Schmeing, T.M., Huang, K.S., Strobel, S.A. and Steitz, T.A. (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature, 438, 520-524.
104. Jackman, J.E., Montange, R.K., Malik, H.S. and Phizicky, E.M. (2003) Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. Rna, 9, 574-585.
105. Lee, Y.H., Chang, C.P., Cheng, Y.J., Kuo, Y.Y., Lin, Y.S. and Wang, C.C. (2017) Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci, 74, 2663-2677.
106. Choudhury, S.R., Westfall, C.S., Hackenberg, D. and Pandey, S. (2013) Measurement of GTP-binding and GTPase activity of heterotrimeric Gα proteins. Methods Mol Biol, 1043, 13-20.
107. Hames, B.D. and Rickwood, D. (1981) Gel electrophoresis of proteins : a practical approach / edited by B.D. Hames, D. Rickwood. IRL Press, London.
108. Lee, Y.-H., Lo, Y.-T., Chang, C.-P., Yeh, C.-S., Chang, T.-H., Chen, Y.-W., Tseng, Y.-K. and Wang, C.-C. (2019) Naturally occurring dual recognition of tRNAHis substrates with and without a universal identity element. RNA Biology, 16, 1275-1285.
109. Bourgeois, G., Marcoux, J., Saliou, J.-M., Cianférani, S. and Graille, M. (2017) Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Research, 45, 1971 - 1982.
110. Urbonavicius, J., Armengaud, J. and Grosjean, H. (2006) Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA. J Mol Biol, 357, 387-399.
111. Hickey, F.B., Corcoran, J.B., Griffin, B., Bhreathnach, U., Mortiboys, H., Reid, H.M., Andrews, D., Byrne, S., Furlong, F., Martin, F. et al. (2014) IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes, 63, 4314-4325.
112. Nakamura, A., Wang, D. and Komatsu, Y. (2018) Biochemical analysis of human tRNA(His) guanylyltransferase in mitochondrial tRNA(His) maturation. Biochem Biophys Res Commun, 503, 2015-2021.
113. Nakamura, A., Wang, D. and Komatsu, Y. (2021) Analysis of GTP addition in the reverse (3′-5′) direction by human tRNA(His) guanylyltransferase. Rna, 27, 665-675.
114. Traut, T.W. (1994) Physiological concentrations of purines and pyrimidines. Molecular and Cellular Biochemistry, 140, 1-22.
115. Zala, D., Schlattner, U., Desvignes, T., Bobe, J., Roux, A., Chavrier, P. and Boissan, M. (2017) The advantage of channeling nucleotides for very processive functions. F1000Res, 6, 724.
116. Wittinghofer, A. and Vetter, I.R. (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem, 80, 943-971.
117. Liu, C.C. and Alberts, B.M. (1981) Characterization of the DNA-dependent GTPase activity of T4 gene 41 protein, an essential component of the T4 bacteriophage DNA replication apparatus. J Biol Chem, 256, 2813-2820.
118. Manikas, R.G., Thomson, E., Thoms, M. and Hurt, E. (2016) The K⁺-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Res, 44, 1800-1812.
119. Kimura, T., Takagi, K., Hirata, Y., Hase, Y., Muto, A. and Himeno, H. (2008) Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J Mol Biol, 381, 467-477.
120. Li, Y.J., Cao, Y.L., Feng, J.X., Qi, Y., Meng, S., Yang, J.F., Zhong, Y.T., Kang, S., Chen, X., Lan, L. et al. (2019) Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset. Nat Commun, 10, 4914. |