參考文獻 |
1. El-Sheikh, M. and S.A. Erath, Family conflict, autonomic nervous system functioning, and child adaptation: State of the science and future directions. Development and Psychopathology, 2011. 23(2): p. 703-721.
2. Tsigos, C. and G.P. Chrousos, Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res, 2002. 53(4): p. 865-71.
3. Fischer, C.P. and L.M. Romero, Chronic captivity stress in wild animals is highly species-specific. Conserv Physiol, 2019. 7(1): p. coz093.
4. Criado-Marrero, M., et al., Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci, 2018. 373(1738).
5. Ullah, H., et al., The Efficacy of S-Adenosyl Methionine and Probiotic Supplementation on Depression: A Synergistic Approach. Nutrients, 2022. 14(13).
6. Lazarou, C., et al., Overview of depression: epidemiology and implications for community nursing practice. Br J Community Nurs, 2011. 16(1): p. 41-7.
7. Yohn, C.N., et al., Social instability is an effective chronic stress paradigm for both male and female mice. Neuropharmacology, 2019. 160: p. 107780.
8. Davis, M.T., et al., Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. Chronic Stress (Thousand Oaks), 2017. 1.
9. Yohn, N.L. and J.A. Blendy, Adolescent Chronic Unpredictable Stress Exposure Is a Sensitive Window for Long-Term Changes in Adult Behavior in Mice. Neuropsychopharmacology, 2017. 42(8): p. 1670-1678.
10. Jhang, J., et al., Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat Commun, 2018. 9(1): p. 2744.
11. Choudhary, D., S. Bhattacharyya, and K. Joshi, Body Weight Management in Adults Under Chronic Stress Through Treatment With Ashwagandha Root Extract: A Double-Blind, Randomized, Placebo-Controlled Trial. J Evid Based Complementary Altern Med, 2017. 22(1): p. 96-106.
12. Joëls, M., Corticosteroids and the brain. J Endocrinol, 2018. 238(3): p. R121-r130.
13. Diego, A. and B. Antonella, The Key Role of the Amygdala in Stress, in The Amygdala, F. Barbara, Editor. 2017, IntechOpen: Rijeka. p. Ch. 9.
14. Roozendaal, B., B.S. McEwen, and S. Chattarji, Stress, memory and the amygdala. Nature Reviews Neuroscience, 2009. 10(6): p. 423-433.
15. Roozendaal, B., B.S. McEwen, and S. Chattarji, Stress, memory and the amygdala. Nat Rev Neurosci, 2009. 10(6): p. 423-33.
16. Peña, C.J., et al., Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 2019. 10(1): p. 5098.
17. McGuigan, W.M. and W. Middlemiss, Sexual abuse in childhood and interpersonal violence in adulthood: a cumulative impact on depressive symptoms in women. J Interpers Violence, 2005. 20(10): p. 1271-87.
18. Birnie, M.T., et al., Plasticity of the Reward Circuitry After Early-Life Adversity: Mechanisms and Significance. Biol Psychiatry, 2020. 87(10): p. 875-884.
19. Uchida, S., et al., Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci, 2010. 30(45): p. 15007-18.
20. Norman, R.E., et al., The long-term health consequences of child physical abuse, emotional abuse, and neglect: a systematic review and meta-analysis. PLoS Med, 2012. 9(11): p. e1001349.
21. Scott, K.M., et al., Childhood maltreatment and DSM-IV adult mental disorders: comparison of prospective and retrospective findings. Br J Psychiatry, 2012. 200(6): p. 469-75.
22. Widom, C.S., K. DuMont, and S.J. Czaja, A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry, 2007. 64(1): p. 49-56.
23. Zhang, Z.Y., et al., Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys. Behav Brain Res, 2016. 306: p. 154-9.
24. Peña, C.J., et al., Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science, 2017. 356(6343): p. 1185-1188.
25. McLaughlin, K.A., et al., Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: a test of the stress sensitization hypothesis in a population-based sample of adults. Psychol Med, 2010. 40(10): p. 1647-58.
26. Goodwill, H.L., et al., Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology, 2019. 44(4): p. 711-720.
27. Lee, M.T., et al., Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines, 2022. 10(5).
28. Sanacora, G., Z. Yan, and M. Popoli, The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nature Reviews Neuroscience, 2022. 23(2): p. 86-103.
29. Monteiro, S., et al., An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front Psychiatry, 2015. 6: p. 6.
30. Bondi, C.O., et al., Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology, 2008. 33(2): p. 320-31.
31. Hollis, F., C. Isgor, and M. Kabbaj, The consequences of adolescent chronic unpredictable stress exposure on brain and behavior. Neuroscience, 2013. 249: p. 232-41.
32. Liu, J., et al., The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology, 2007. 148(11): p. 5531-40.
33. Guo, M., et al., Role of the adipose PPARgamma-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry, 2017. 22(7): p. 1056-1068.
34. Higuchi, F., et al., Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci, 2016. 36(27): p. 7253-67.
35. Riess, H., The Science of Empathy. J Patient Exp, 2017. 4(2): p. 74-77.
36. Sanders, J., M. Mayford, and D. Jeste, Empathic fear responses in mice are triggered by recognition of a shared experience. PLoS One, 2013. 8(9): p. e74609.
37. Smith, M.L., N. Asada, and R.C. Malenka, Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science, 2021. 371(6525): p. 153-159.
38. Preston, S.D. and F.B. de Waal, Empathy: Its ultimate and proximate bases. Behav Brain Sci, 2002. 25(1): p. 1-20; discussion 20-71.
39. Bernhardt, B.C. and T. Singer, The neural basis of empathy. Annu Rev Neurosci, 2012. 35: p. 1-23.
40. Bora, E., M. Yucel, and C. Pantelis, Theory of mind impairment in schizophrenia: meta-analysis. Schizophr Res, 2009. 109(1-3): p. 1-9.
41. Ueno, H., et al., Empathic behavior according to the state of others in mice. Brain Behav, 2018. 8(7): p. e00986.
42. Ben-Ami Bartal, I., J. Decety, and P. Mason, Empathy and pro-social behavior in rats. Science, 2011. 334(6061): p. 1427-30.
43. Langford, D.J., et al., Social modulation of pain as evidence for empathy in mice. Science, 2006. 312(5782): p. 1967-70.
44. Burkett, J.P., et al., Oxytocin-dependent consolation behavior in rodents. Science, 2016. 351(6271): p. 375-8.
45. Phillips, H.L., et al., Dorsomedial prefrontal hypoexcitability underlies lost empathy in frontotemporal dementia. Neuron, 2023. 111(6): p. 797-806.e6.
46. Jeon, D., et al., Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci, 2010. 13(4): p. 482-8.
47. Atsak, P., et al., Experience modulates vicarious freezing in rats: a model for empathy. PLoS One, 2011. 6(7): p. e21855.
48. Smith, M.L., et al., Social transfer of pain in mice. Sci Adv, 2016. 2(10): p. e1600855.
49. Olsson, A. and E.A. Phelps, Social learning of fear. Nature Neuroscience, 2007. 10(9): p. 1095-1102.
50. Jeon, D., et al., Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nature Neuroscience, 2010. 13(4): p. 482-488.
51. Haaker, J., et al., Endogenous opioids regulate social threat learning in humans. Nature Communications, 2017. 8(1): p. 15495.
52. Allsop, S.A., et al., Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell, 2018. 173(6): p. 1329-1342.e18.
53. Terranova, J.I., et al., Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron, 2022. 110(8): p. 1416-1431.e13.
54. Chen, Q., J.B. Panksepp, and G.P. Lahvis, Empathy Is Moderated by Genetic Background in Mice. PLOS ONE, 2009. 4(2): p. e4387.
55. Keum, S. and H.-S. Shin, Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron, 2019. 104(1): p. 78-86.
56. Zhang, M.M., et al., Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron, 2022. 110(12): p. 1993-2008.e6.
57. Kondrakiewicz, K., et al., Social Transfer of Fear in Rodents. Curr Protoc Neurosci, 2019. 90(1): p. e85.
58. Pardo, J.V., et al., The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci U S A, 1990. 87(1): p. 256-9.
59. Weissman, D.H., et al., Dorsal Anterior Cingulate Cortex Resolves Conflict from Distracting Stimuli by Boosting Attention toward Relevant Events. Cerebral Cortex, 2004. 15(2): p. 229-237.
60. Posner, M.I. and G.J. DiGirolamo. Executive attention: Conflict, target detection, and cognitive control. 1998.
61. Bush, G., P. Luu, and M.I. Posner, Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci, 2000. 4(6): p. 215-222.
62. Cartoni, E., S. Puglisi-Allegra, and G. Baldassarre, The three principles of action: a Pavlovian-instrumental transfer hypothesis. Front Behav Neurosci, 2013. 7: p. 153.
63. Kim, S.W., et al., Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron, 2023. 111(3): p. 418-429.e4.
64. Sahay, A. and R. Hen, Adult hippocampal neurogenesis in depression. Nature Neuroscience, 2007. 10(9): p. 1110-1115.
65. Kim, J., et al., Metabotropic Glutamate Receptor 5 in Amygdala Target Neurons Regulates Susceptibility to Chronic Social Stress. Biol Psychiatry, 2022. 92(2): p. 104-115.
66. Huang, S.H., et al., Association of Increased Amygdala Activity with Stress-Induced Anxiety but not Social Avoidance Behavior in Mice. Neurosci Bull, 2022. 38(1): p. 16-28.
67. Ma, H., et al., Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A, 2021. 118(6).
68. Ito, H., et al., Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology, 2010. 58(4-5): p. 746-57.
69. Reznikov, L.R., L.P. Reagan, and J.R. Fadel, Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Res, 2009. 1256: p. 61-8.
70. Lupien, S.J., et al., The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Frontiers in Neuroendocrinology, 2018. 49: p. 91-105.
71. Walter, T.J., R.P. Vetreno, and F.T. Crews, Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects. Alcohol Clin Exp Res, 2017. 41(12): p. 2066-2081.
72. Hoffman, A.N., et al., Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder. Neurobiology of Learning and Memory, 2014. 112: p. 139-147.
73. Kim, E.J., B. Pellman, and J.J. Kim, Stress effects on the hippocampus: a critical review. Learn Mem, 2015. 22(9): p. 411-6.
74. McEwen, B.S., C. Nasca, and J.D. Gray, Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology, 2016. 41(1): p. 3-23.
75. Misquitta, K.A., et al., Reduced anterior cingulate cortex volume induced by chronic stress correlates with increased behavioral emotionality and decreased synaptic puncta density. Neuropharmacology, 2021. 190: p. 108562.
76. Fee, C., et al., Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience, 2020. 440: p. 113-129.
77. Kim, E.J. and J.J. Kim, Neurocognitive effects of stress: a metaparadigm perspective. Molecular Psychiatry, 2023.
78. Park, A.T., et al., Early childhood stress is associated with blunted development of ventral tegmental area functional connectivity. Dev Cogn Neurosci, 2021. 47: p. 100909.
79. Zhai, Z.W., et al., Childhood trauma moderates inhibitory control and anterior cingulate cortex activation during stress. Neuroimage, 2019. 185: p. 111-118.
80. Cohen, R.A., et al., Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry, 2006. 59(10): p. 975-82.
81. Eachus, H., M.K. Choi, and S. Ryu, The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol, 2021. 9: p. 657591.
82. Heun-Johnson, H. and P. Levitt, Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice. Neurobiol Stress, 2018. 8: p. 10-20.
83. Liu, M.-Y., et al., Sucrose preference test for measurement of stress-induced anhedonia in mice. Nature Protocols, 2018. 13(7): p. 1686-1698.
84. Gross, M. and A. Pinhasov, Chronic mild stress in submissive mice: Marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res, 2016. 298(Pt B): p. 25-34.
85. Numa, C., et al., Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: Involvement of dopamine D1 receptor in the medial prefrontal cortex. Scientific Reports, 2019. 9(1): p. 16670.
86. Zhao, M.G., et al., Enhanced presynaptic neurotransmitter release in the anterior cingulate cortex of mice with chronic pain. J Neurosci, 2006. 26(35): p. 8923-30.
87. Cacioppo, J.T., et al., Social isolation. 2011. 1231(1): p. 17-22.
88. Cacioppo, J.T. and L.C. Hawkley, Perceived social isolation and cognition. Trends in Cognitive Sciences, 2009. 13(10): p. 447-454.
89. Pollak, S.D., et al., Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Development, 2010. 81(1): p. 224-236.
90. Dutta, S. and P. Sengupta, Men and mice: Relating their ages. Life Sciences, 2016. 152: p. 244-248.
91. Hu, P., et al., Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Translational Psychiatry, 2020. 10(1): p. 396.
92. Liu, Y.W., et al., Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res, 2016. 1631: p. 1-12.
93. Chronister, B.N., et al., Testosterone, estradiol, DHEA and cortisol in relation to anxiety and depression scores in adolescents. J Affect Disord, 2021. 294: p. 838-846.
94. Li, D., et al., Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab, 2023. 35(4): p. 685-694.e5.
95. Markov, D.D., Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sci, 2022. 12(10).
96. Kinlein, S.A., et al., Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology, 2019. 102: p. 248-255.
97. Berger, I., et al., The adrenal gland in stress – Adaptation on a cellular level. The Journal of Steroid Biochemistry and Molecular Biology, 2019. 190: p. 198-206.
98. Ulrich-Lai, Y.M., et al., Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab, 2006. 291(5): p. E965-73.
99. Millhouse, O.E. and J. DeOlmos, Neuronal configurations in lateral and basolateral amygdala. Neuroscience, 1983. 10(4): p. 1269-300.
100. Xiao, Q., X. Xu, and J. Tu, Chronic optogenetic manipulation of basolateral amygdala astrocytes rescues stress-induced anxiety. Biochemical and Biophysical Research Communications, 2020. 533(4): p. 657-664.
101. Meyza, K., et al., Neuronal correlates of asocial behavior in a BTBR T (+) Itpr3(tf)/J mouse model of autism. Front Behav Neurosci, 2015. 9: p. 199.
102. McQuade, J.M., et al., Deficient hippocampal c-fos expression results in reduced anxiety and altered response to chronic stress in female mice. Neurosci Lett, 2006. 403(1-2): p. 125-30.
103. Moench, K.M., M.R. Breach, and C.L. Wellman, Chronic stress produces enduring sex- and region-specific alterations in novel stress-induced c-Fos expression. Neurobiol Stress, 2019. 10: p. 100147. |