參考文獻 |
Adamson, D.T. and Parkin, G.F. 2000. Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethene-dechlorinating enrichment culture. Environmental Science & Technology 34(10), 1959-1965.
Alonso, F., Beletskaya, I.P. and Yus, M. 2002. Metal-mediated reductive hydrodehalogenation of organic halides. Chemical Reviews 102(11), 4009-4092.
Bache, R. and Pfennig, N. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Archives of Microbiology 130, 255-261.
Balch, W.E., Schoberth, S., Tanner, R.S. and Wolfe, R. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. International Journal of Systematic and Evolutionary Microbiology 27(4), 355-361.
Bertsch, J. and Müller, V. 2015. CO metabolism in the acetogen Acetobacterium woodii. Applied and Environmental Microbiology 81(17), 5949-5956.
Bertsch, J., Siemund, A.L., Kremp, F. and Müller, V. 2016. A novel route for ethanol oxidation in the acetogenic bacterium Acetobacterium woodii: the acetaldehyde/ethanol dehydrogenase pathway. Environmental Microbiology 18(9), 2913-2922.
Chan, W.W., Grostern, A., Löffler, F.E. and Edwards, E.A. 2011. Quantifying the effects of 1, 1, 1-trichloroethane and 1, 1-dichloroethane on chlorinated ethene reductive dehalogenases. Environmental Science & Technology 45(22), 9693-9702.
Dönig, J. and Müller, V. 2018. Alanine, a novel growth substrate for the acetogenic bacterium Acetobacterium woodii. Applied and Environmental Microbiology 84(23), e02023-02018.
Davidova, M., Tarasova, N., Mukhitova, F. and Karpilova, I. 1994. Carbon monoxide in metabolism of anaerobic bacteria. Canadian Journal of Microbiology 40(6), 417-425.
De Wildeman, S., Neumann, A., Diekert, G. and Verstraete, W. 2003. Growth-substrate dependent dechlorination of 1, 2-dichloroethane by a homoacetogenic bacterium. Biodegradation 14, 241-247.
Ding, C., Alvarez-Cohen, L. and He, J. 2018. Growth of Dehalococcoides mccartyi species in an autotrophic consortium producing limited acetate. Biodegradation 29, 487-498.
Ding, C., Chow, W.L. and He, J. 2013. Isolation of Acetobacterium sp. strain AG, which reductively debrominates octa-and pentabrominated diphenyl ether technical mixtures. Applied and Environmental Microbiology 79(4), 1110-1117.
Ding, C., Zhao, S. and He, J. 2014. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1, 1, 1‐trichloroethane and chloroform. Environmental Microbiology 16(11), 3387-3397.
Doherty, R.E. 2000. A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: part 1—historical background; carbon tetrachloride and tetrachloroethylene. Environmental Forensics 1(2), 69-81.
Duhamel, M., Wehr, S.D., Yu, L., Rizvi, H., Seepersad, D., Dworatzek, S., Cox, E.E. and Edwards, E.A. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Research 36(17), 4193-4202.
Egli, C., Scholtz, R., Cook, A.M. and Leisinger, T. 1987. Anaerobic dechlorination of tetrachloromethane and 1, 2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiology Letters 43(3), 257-261.
Egli, C., Tschan, T., Scholtz, R., Cook, A.M. and Leisinger, T. 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Applied and Environmental Microbiology 54(11), 2819-2824.
Gantzer, C.J. and Wackett, L.P. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & Technology 25(4), 715-722.
Gälli, R. and McCARTY, P.L. 1989. Biotransformation of 1, 1, 1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Applied and Environmental Microbiology 55(4), 837-844.
Grostern, A. and Edwards, E.A. 2006. A 1, 1, 1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Applied and Environmental Microbiology 72(12), 7849-7856.
Haiko, J. and Westerlund-Wikström, B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology 2(4), 1242-1267.
Hashsham, S.A. and Freedman, D.L. 1999. Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Applied and Environmental Microbiology 65(10), 4537-4542.
He, J., Holmes, V.F., Lee, P.K. and Alvarez-Cohen, L. 2007. Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Applied and Environmental Microbiology 73(9), 2847-2853.
He, J., Ritalahti, K.M., Aiello, M.R. and Loffler, F.E. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology 69(2), 996-1003.
Heise, R., Müller, V. and Gottschalk, G. 1989. Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. Journal of Bacteriology 171(10), 5473-5478.
Hermon, L., Hellal, J., Denonfoux, J., Vuilleumier, S., Imfeld, G., Urien, C., Ferreira, S. and Joulian, C. 2019. Functional genes and bacterial communities during organohalide respiration of chloroethenes in microcosms of multi-contaminated groundwater. Frontiers in Microbiology 10, 89.
Hess, V., Oyrik, O., Trifunović, D. and Müller, V. 2015. 2, 3-Butanediol metabolism in the acetogen Acetobacterium woodii. Applied and Environmental Microbiology 81(14), 4711-4719.
Hess, V., Schuchmann, K. and Müller, V. 2013. The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. Journal of Biological Chemistry 288(44), 31496-31502.
Humans, I.W.G.o.t.E.o.C.R.t. 2014. Trichloroethylene, Tetrachloroethylene, and Some Other Chlorinated Agents. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 106, 1.
Jordan, A., Stoy, P. and Sneddon, H.F. 2020. Chlorinated solvents: their advantages, disadvantages, and alternatives in organic and medicinal chemistry. Chemical Reviews 121(3), 1582-1622.
Jugder, B.-E., Ertan, H., Bohl, S., Lee, M., Marquis, C.P. and Manefield, M. 2016. Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation. Frontiers in Microbiology 7, 249.
Kamariah, N., Huber, R.G., Bond, P.J., Müller, V. and Grüber, G. 2020. 3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Biochemical and Biophysical Research Communications 527(2), 518-524.
Karekar, S.C., Srinivas, K. and Ahring, B.K. 2019. Kinetic study on heterotrophic growth of Acetobacterium woodii on lignocellulosic substrates for acetic acid production. Fermentation 5(1), 17.
Kremp, F., Poehlein, A., Daniel, R. and Müller, V. 2018. Methanol metabolism in the acetogenic bacterium Acetobacterium woodii. Environmental Microbiology 20(12), 4369-4384.
Löffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Müller, J.A., Fullerton, H., Zinder, S.H. and Spormann, A.M. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology 63(Pt_2), 625-635.
Lechtenfeld, M., Heine, J., Sameith, J., Kremp, F. and Müller, V. 2018. Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii. Environmental Microbiology 20(12), 4512-4525.
Leo, F., Schwarz, F.M., Schuchmann, K. and Müller, V. 2021. Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO2 reduction to formate. Applied Microbiology and Biotechnology 105(14-15), 5861-5872.
Love, M.I., Huber, W. and Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12), 1-21.
Middleton, D. 2021. Carcinogenicity of 1, 1, 1-trichloroethane and four other industrial chemicals. Lancet Oncology.
Moon, J., Dönig, J., Kramer, S., Poehlein, A., Daniel, R. and Müller, V. 2021. Formate metabolism in the acetogenic bacterium Acetobacterium woodii. Environmental Microbiology 23(8), 4214-4227.
Payne, K.A., Quezada, C.P., Fisher, K., Dunstan, M.S., Collins, F.A., Sjuts, H., Levy, C., Hay, S., Rigby, S.E. and Leys, D. 2015. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535), 513-516.
Peters, V., Janssen, P. and Conrad, R. 1998. Efficiency of hydrogen utilization during unitrophic and mixotrophic growth of Acetobacterium woodii on hydrogen and lactate in the chemostat. FEMS Microbiology Ecology 26(4), 317-324.
Puentes Jácome, L.A., Wang, P.-H., Molenda, O., Li, Y.X., Islam, M.A. and Edwards, E.A. 2019. Sustained dechlorination of vinyl chloride to ethene in Dehalococcoides-enriched cultures grown without addition of exogenous vitamins and at low pH. Environmental Science & Technology 53(19), 11364-11374.
Ragsdale, S.W. and Pierce, E. 2008. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1784(12), 1873-1898.
Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S. and Löffler, F.E. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology 72(4), 2765-2774.
Ross, D.E., Marshall, C.W., Gulliver, D., May, H.D. and Norman, R.S. 2020. Defining genomic and predicted metabolic features of the Acetobacterium genus. Msystems 5(5), e00277-00220.
Scheutz, C., Durant, N.D., Hansen, M.H. and Bjerg, P.L. 2011. Natural and enhanced anaerobic degradation of 1, 1, 1-trichloroethane and its degradation products in the subsurface–a critical review. Water Research 45(9), 2701-2723.
Schoelmerich, M.C., Katsyv, A., Sung, W., Mijic, V., Wiechmann, A., Kottenhahn, P., Baker, J., Minton, N.P. and Müller, V. 2018. Regulation of lactate metabolism in the acetogenic bacterium Acetobacterium woodii. Environmental Microbiology 20(12), 4587-4595.
Schuchmann, K., Chowdhury, N.P. and Müller, V. 2018. Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Frontiers in Microbiology 9, 2911.
Schuchmann, K. and Müller, V. 2013. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342(6164), 1382-1385.
STUPPERICH, E., EISINGER, H.J. and KRÄUTLER, B. 1988. Diversity of corrinoids in acetogenic bacteria: P‐Cresolylcobamide from Sporomusa ovata, 5‐methoxy‐6‐methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B12 from Acetobacterium woodii. European Journal of Biochemistry 172(2), 459-464.
Sun, B., Griffin, B.M., Ayala-del-Rı́o, H.L., Hashsham, S.A. and Tiedje, J.M. 2002. Microbial dehalorespiration with 1, 1, 1-trichloroethane. Science 298(5595), 1023-1025.
Tang, S. and Edwards, E.A. 2013. Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1, 1, 1-trichloroethane and 1, 1-dichloroethane. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1616), 20120318.
Trifunović, D., Schuchmann, K. and Müller, V. 2016. Ethylene glycol metabolism in the acetogen Acetobacterium woodii. Journal of Bacteriology 198(7), 1058-1065.
Vargas, C., Ahlert, R.C., Abbott, E.E. and Gayton, M.G. 2018 Anaerobic degradation of chlorinated solvents, pp. 339-346, CRC Press.
Wang, S., Qiu, L., Liu, X., Xu, G., Siegert, M., Lu, Q., Juneau, P., Yu, L., Liang, D. and He, Z. 2018. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnology Advances 36(4), 1194-1206.
Wen, L.-L., Chen, J.-X., Fang, J.-Y., Li, A. and Zhao, H.-P. 2017. Effects of 1, 1, 1-trichloroethane and triclocarban on reductive dechlorination of trichloroethene in a TCE-reducing culture. Frontiers in Microbiology 8, 1439.
Westphal, L., Wiechmann, A., Baker, J., Minton, N.P. and Müller, V. 2018. The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. Journal of Bacteriology 200(21), e00357-00318.
Wiechmann, A., Ciurus, S., Oswald, F., Seiler, V.N. and Müller, V. 2020. It does not always take two to tango:“Syntrophy” via hydrogen cycling in one bacterial cell. ISME J 14(6), 1561-1570.
Wong, Y.K., Holland, S.I., Ertan, H., Manefield, M. and Lee, M. 2016. Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration. Environmental Microbiology 18(9), 3092-3105.
Yan, J., Ritalahti, K.M., Wagner, D.D. and Löffler, F.E. 2012. Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Applied and Environmental Microbiology 78(18), 6630-6636.
Yang, M.I., Previdsa, M., Edwards, E.A. and Sleep, B.E. 2020. Two distinct Dehalobacter strains sequentially dechlorinate 1, 1, 1-trichloroethane and 1, 1-dichloroethane at a field site treated with granular zero valent iron and guar gum. Water Research 186, 116310.
Yang, Y., Cápiro, N.L., Yan, J., Marcet, T.F., Pennell, K.D. and Löffler, F.E. 2017. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiology Ecology 93(12), fix130. |