博碩士論文 105690604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.117.148.251
姓名 薩德(Chane Moges Seid)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 使用中壢特高頻雷達系統干涉觀測中緯度排列的零星E層不規則現象之動態行為
(Interferometry observation of the dynamic behavior of midlatitude field aligned sporadic E layer irregularities using Chung-Li VHF radar system)
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究使用中壢站(〖25.0〗^o N, 〖121.1〗^o E)超高頻雷達的資料,透過多基線干涉測量分析(multiple baseline interferometry analysis)方法研究中緯度電離層E層中零星不規則體的結構與動態變化。干涉儀測量表明,E層零星不規則體在經向、緯向與垂直方向分布範圍依序為4~12公里、10~28公里與6~14公里。垂直、緯向與經向的E層零星電漿飄移速度以投影至上述立體空間之投影做估計,各別方向之速度落在-15 ~16 公尺/秒、-91~50公尺/秒與-13~26公尺/秒,其中正(負)分別代表向上(下)、向東(西)與向北(南)。分析重力波的頻散關係得知E層中的重力波傳遞方向主要是由西向分量與些許的北向分量構成。此波的週期最大約46.3分鐘且垂直方向、經向與緯向之波長分別落在4~12公里、10~28公里與6~14公里。此外,E層理論極化電場是根據電離層電流系統計算的,理論上推得的經向極化電場大於緯向極化電場。此次研究在重力波破碎的之E層環境中,透過東向的極化電場估計飄移速度並且與雷達觀測之場向不規則體徑向速度做比較。由觀測結果顯示,徑向方向的速度與東向的極化電場所對應之飄移速度一致。因此,在E層不穩定很可能是造成電漿結構變化的主因。此外,干涉儀測量顯示,與重力波傳播相關的電漿結構呈塊狀或羽狀結構,而那些不受重力波干擾的電漿結構呈薄層結構,並以約 2.17 公里/小時的速度隨時間下降.觀測表明,厚度約為 2-4 公里的薄 Es 層的高度可以被高度為 10 公里或更高的重力波影響,造成顯著的改變。
摘要(英) Based on multiple baseline interferometry analysis, we investigated the spatial struc- tures and dynamic characteristics of the 3-m field aligned sporadic E (Es) layer ir- regularities at midlatitude by using Chung-Li VHF radar (25.0o N, 121.1o E). Inter- ferometry measurement demonstrates that the meridional, zonal and vertical extents of the field aligned sporadic E layer plasma structures were approximately in the spans 6 - 14 km, 10 - 28 km, and 4 - 12 km, respectively. The vertical, zonal and true meridional drift velocity of sporadic E plasma structures estimated from the temporal displacement of the plasma patterns projection on three mutually normal surfaces were, respectively, in ranges between -15 and 16 m/s, between -91 and 50 m/s, and between -13 and 26 m/s, in which the positive (negative) sign indicates upward, eastward and northward (downward, westward and southward) drifts. Anal- ysis of the dispersion relation of gravity waves of the trace velocity components of Es layer suggests the presence of majorly westward with slightly northward propagating gravity waves that modulated the Es layer. Evidences shown that the largest gravity wave period is about 46.3 min and the vertical, zonal and meridional wavelengths of the gravity wave is approximately about 12 km, 120 km and 35-40 km, respectively. In addition, the theoretical polarized electric fields of Es layer are calculated from ionospheric current system such that the zonal (i.e., eastward) polarized electric field




was much larger than the meridional polarized electric field. Then, the corresponding drift velocity of eastward polarized electric field is estimated to compare with the radar-observed radial velocity of Es FAI in the environment of gravity wave breaking. The observed radial velocity agree with drift velocity of eastward polarized electric field. Therefore, the gradient drift instability was most likely the physical mechanism governing the dynamic behavior of the plasma structures. Furthermore, interferom- etry observation indicates that the plasma structures associated with gravity wave propagation were in clumpy or plume-like structures, while those not disturbed by the gravity waves were in a thin layer structure that descended over time at a rate of about 2.17 km/hr. The observation demonstrates that the height of a thin Es layer with a thickness of about 2-4 km can be significantly altered by a gravity wave with a height of 10 km or more.
關鍵字(中) ★ 干涉測量法 關鍵字(英) ★ Interferometry
論文目次 Table of Contents v
List of Tables viii
List of Figures ix
Acknowledgements xiii
Abstract xv
1 Introduction 1
1.1 Backgrounds of the research . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Statements of the problem . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Objectives of the research . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Significance of the study . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Relevance of the study . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Radar system 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Radar parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Range resolution . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Doppler frequency . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Phase code waveform . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Phased array antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Chung-Li VHF radar array antenna design . . . . . . . . . . . 21
2.4 Ray path geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Distance above the earth surface . . . . . . . . . . . . . . . . 22





2.4.2 Distance between radar and target 24
3 Characteristic of sporadic E layer 26
3.1 Introduction 26
3.2 Formations of Es layer 27
3.2.1 Directional effect of electric field 27
3.2.2 Windshear theory 28
3.2.3 Metallic ion in sporadic E layer 30
3.3 Radio wave scattering from Es irregularities 31
3.3.1 Radio wave scattering 31
3.3.2 FAIs formation property 33
3.3.3 Plasma instability process 35
3.3.4 Linear and nonlinear turbulence cascade process 38
4 Gravity wave theory 39
4.1 Introduction 39
4.2 Linear theory 40
4.2.1 High frequency gravitational wave dispersion relation 43
4.3 Gravity wave breaking 44
4.3.1 Convective instability caused by gravity wave breaking 44
4.3.2 Turbulence due to convective instability associated with wave breaking 45
4.4 Atmospheric stability 46
5 Generation of currents and electric fields in ionosphere 47
5.1 Introduction 47
5.2 Atmospheric neutral wind in ionosphere 48
5.2.1 Ionospheric dynamo process 48
5.3 Ohm’s rule in the ionosphere 49
5.4 Electric field potential mapping 51
5.5 The role of field aligned current 52
6 Radar experiment 53
6.1 Introduction 53
6.2 Interferometry technique 54
6.3 Experimental setup 57
6.4 Methods for estimating echo parameters 58
6.4.1 Moment method 58
6.4.2 Barker code 59
6.4.3 Singular value decomposition (SVD) 60
6.5 Observational results 61
7 Theoretical derivation of polarized electric field of Es layer associ- ated with gravity wave breaking 92
7.1 Introduction 92
7.2 Convective instability excited by gravity wave breaking 93
7.3 Derivation of polarized electric field associated with gravity wave break-
ing 94
8 Discussion 107
9 Conclusions and future work 114
9.1 Conclusions 114
9.2 Future work 116
Bibliography 117
參考文獻 [1] AIAA (American Institute of Aeronautics and Astronautics). Airborne Early Warning Association, (2012). Radar frequency bands. Retrieved from website: http://www.aewa.org/Library/
[2] Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt (1998), Vorticity dynamics in a breaking gravity wave, 1, Initial instability evolution, J. Fluid Mech., 367, 27-46.
[3] Andrioli, V. F., P. P. Batista, J. Xu, G. Yang, W. Chi, and L. Zhengkuan (2017), Strong temperature gradients and vertical wind shear on MLT region associated to instability source at 23oS, J. Geophys. Res. Space Physics, 122, 4500-4511, doi:10.1002/2016JA023638.
[4] Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmidt, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio oc- cultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158.
[5] Axford, W.I. (1963), The formation and vertical movement of dense ionized layers in the ionosphere due to neutral windshears. J.Geophys.Res.68(3), 769- 779.117

[6] Bowles, K. L., B. B. Balsley, and Ronert Cohen (1963), Field-Aligned E-Region Irregularities Identified with Acoustic Plasma Waves, J. Geophys. Res., VOL. 58, No. 9.
[7] Calvert, W., Warnock, J.M. (1969), Ionospheric irregularities observed by top- side sounders. Proc. IEEE 57 (6), 1019-1025.
[8] Chen, C., X. Chu, J. Zhao, B. R. Roberts, Z. Yu, W. Fong, X. Lu, and
J. A. Smith (2016), Lidar observations of persistent gravity waves with periods of 3-10 h in the Antarctic middle and upper atmosphere at Mc- Murdo (77.83oS, 166.67oE), J. Geophys. Res. Space Physics, 121, 1483-1502, doi:10.1002/2015JA022127.
[9] Chen, C.L., Pan, C.J., Rottger, J., Ananda, V.K. (2005), Three dimen- sional tracking of midlatitude quasi-periodic E-region echoes observed with the Chung-Li VHF radar. Annales de Geophysique 23, 393-400.
[10] Chen, G., Wu, C., Zhao, Z., Zhong, D., Qi, H., Jin, H. (2015a), Daytime E region field-aligned irregularities observed during a solar eclipse. J. Geophys. Res. Space Phys. 119 (12), 10633-10640.
[11] Chimonas, G., Axford, W.I. (1968), Vertical movement of temperate-zone spo- radic E layers. J.Geophys.Res.73(1),111-117.
[12] Chu, Y.H., Shan-Ren Kuo, Chien-Ya Wang, Hsien-Chien Huang (1996), Spec- tral Behavior of VHF Backscatter From Ionospheric Sporadic E Irregularities in the Equatorial Anomaly Crest Zone, TAO, Vol. 7, No. 3, 361-373.

[13] Chu, Y.H., Wang, C.Y. (1997), Interferometry observations of three- dimensional spatial structures of sporadic E irregularities using the Chung-Li VHF radar. Radio Science 32, 817-832.
[14] Chu, Y.H., Wang, C.Y. (1999), Interferometry investigations of VHF backscat- ter from plasma irregularity patches in the nighttime E region using the Chung- Li radar. Journal of Geophysical Research 104, 2621-2631.
[15] Chu, Y.-H., and C.-Y. Wang (2002), Plasma structures of 3 meter type 1 and type 2 irregularities in nighttime midlatitude sporadic E region, J. Geophys. Res., 107(A12), 1447, doi:10.1029/2002JA009318.
[16] Chu, Y.-H., and C.-Y. Wang (2003), Radial velocity and doppler spectral width of echoes from field-aligned irregularities localized in the sporadic E region, J. Geophys. Res., 108(A7), 1282, doi:10.1029/2002JA009661.
[17] Chu, Y.H., Wang, C.Y. (2005), An evidence of beam broadening effect domi- nating Doppler spectra of field-aligned irregularities in sporadic E region made with the Chung-Li radar. Journal of Geophysical Research 110, A09305.
[18] Chu, Y. H., C. Y. Wang, K. F. Yang (2007), Plasma structures responsible for sporadic E region quasi-periodic echoes, Journal of Atmospheric and Solar- Terrestrial Physics, 69, 537-551.
[19] Chu, Y. H., C. Y.Wang, K. H. Wu, K. T. Chen, K. J. Tzeng, C. L. Su, W. Feng, and J. M. C. Plane (2014), Morphology of sporadic E layer retrieved from COS- MIC GPS radio occultation measurements: Wind shear theory examination, J. Geophys. Res. Space Physics, 119, 2117-2136, doi:10.1002/2013JA019437.

[20] Chu, Y.-H., and K.-F. Yang (2009), Reconstruction of spatial structure of thin layer in sporadic E region by using VHF coherent scatter radar, Radio Sci., 44, RS5003, doi:10.1029/2008RS003911.
[21] Chu, Y. H., K. F. Yang, C. Y. Wang, and C. L. Su (2013), Meridional electric fields in layer-type and clump-type plasma structures in midlatitude sporadic E region: Observations and plausible mechanisms, J. Geophys. Res. Space Physics, 118, 1243-1254, doi:10.1002/jgra.50191.
[22] Chu, Y. H., P. S. Brahmanandam, C. Y. Wang, C. L. Su, and R. M. Kuong (2011), Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT3/COSMIC satellites. J. Atmos. Sol.- Terr. Phys., 73, 883-894, doi: 10.1016/j.jastp.2010.10.004.
[23] Cosgrove, R. B., and R. T. Tsunoda (2002), A direction-dependent instability of sporadic- E layers in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 29(18), 1864, doi:10.1029/2002GL014669.
[24] Cosgrove, R.B., Tsunoda, R.T. (2003), Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere. Journal of Geophysical Research 108 (A7), 1283.
[25] Drob, D. P., et al. (2015), An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2, 301-319, doi:10.1002/2014EA000089.
[26] Dunkerton, T. J. (1984), Inertia-gravity waves in the stratosphere, J. Atmos. Sci., 41, 3396-3404.

[27] Farley, D.T. (1985), Theory of equatorial electrojet plasma waves: new devel- opments and current status. Journal of Atmospheric and Terrestrial Physics 47, 729-744.
[28] Farley, D.T., Ierkie, H.M., Fejer, B.G. (1981), Radar interferometry: a new technique for studying plasma turbulence in the ionosphere. Journal of Geo- physical Research 86, 1467-1472.
[29] Fejer, B.G., Kelley, M.C. (1980), Ionospheric irregularities. Rev. Geophys. 18, 401-454.
[30] Fejer, B. G., J. Providakes, and D. T. Farley (1984), Theory of plasma waves in the auroral E region, J. Geophys. Res., 89, 7487-7494, doi:10.1029/JA089iA09p07487.
[31] Ferguson, E. E. and F. C. Fehsenfeld (1968), Some aspect of the metal ion chemistry of the earth’s atmosphere, J. Geophys. Res., space physics, Vol. 73, No. 19.
[32] Fong, W., X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald (2014), Winter temperature tides from 30 to 110 km at McMurdo (77.8oS, 166.7oE), Antarctica: Lidar observa- tions and comparisons with WAM, J. Geophys. Res. Atmos., 119, 2846-2863, doi:10.1002/ 2013JD020784.
[33] Fritts, D.C., Abdu, M.A., Batista, B.R., et al. (2009), Overview and summary of the Spread F Experiment (SpreadFEx). Ann. Geophys. 27, 2141-2155.

[34] Fritts, D. C. and Alexander, M. J. (2003), Gravity wave dynam- ics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi.org/10.1029/2001RG000106.
[35] Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer (2003), Layering ac- companying turbulence generation due to shear instability and gravity wave breaking, J. Geophys. Res., 108(D8), 8452 doi:10.1029/2002JD002406.
[36] Fritts, D. C., J. R. Isler, and O. Andreassen (1994), Gravity wave breaking in two and three dimensions: 1. Three-dimensional evolution and instability structure, J. Geophys. Res., 99, 8109-8123.
[37] Fritts, D. C., and P. K. Rastogi (1985), Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci., 20, 1247-1277.
[38] Fukao, S., M. C. Kelley, T. Shirakawa, T. Takami, M. Yamamoto, T. Tsuda, and S. Kato (1991), Turbulent upwelling of the midlatitude iono- sphere: 1. Observational results by MU radar, J. Geophys. Res., 96, 3725-3746, doi:10.1029/90JA02253.
[39] Gavrilov, N. M., S. Fukao, T. Nakamura, T. Tsuda, M. D. Yamanaka, and
M. Yamamoto (1996), Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere, 1, Method and general characteristics, J. Geophys. Res., 101, 29,511-29,521.
[40] Gerd W.prlss (2011), physics of the earth’s space environment an introduction.

[41] Geyer, Michael (2016-6), Earth-Referenced Aircraft Navigation and Surveillance Analysis. Project Memorandum, DOT-VNTSC-FAA-16-12. https://rosap.ntl.bts.gov/view/dot/12301.
[42] Gossard, E. E., and W. H. Hooke (1975), Waves in the Atmosphere, 456 pp., Elsevier, New York.
[43] Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly (2000), Inertia- gravity waves observed in the lower stratosphere over Macquarie Island, J. Atmos. Sci., 57, 737-752.
[44] Gurevich, A. V., N. D. Borisov, and K. P. Zybin (1997), Ionospheric turbulence induced in the lower part of the E region by the turbulence of the neutral atmosphere, J. Geophys. Res., 102, 379-388, doi:10.1029/96JA00163.
[45] Haldoupis, C. (2012), Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. SpaceSci.Rev.168, 441-461.
[46] Haldoupis, C., D. Pancheva, W. Singer, C. Meek, J. MacDougall (2007), An explanation for the seasonal dependence of midlatitude sporadic E layers. J. Geophys. Res. 112, A06315, doi:10.1029/2007JA012322.
[47] Hargreaves, J. K. (1992), The solar-terrestrial environment: An introduction to geospace-the science of the terrestrial upper atmosphere, ionosphere and magnetosphere, Cambridge University Press.
[48] Hedin, A. E. (1991), Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172.

[49] Heelis R. A. (2004), Electrodynamics in the low and middle latitude iono- sphere: a tutorial, J. Atmos. Sol. Terr. Phys., Vol. 66, pp. 825-838.
[50] Huang, K. M., A. Z. Liu, S. D. Zhang, F. Yi, C. M. Huang, Y. Gong, Q. Gan,
Y. H. Zhang, and R. Wang (2017), Simultaneous upward and downward propa- gating inertia-gravity waves in the MLT observed at Andes Lidar Observatory, J. Geophys. Res. Atmos., 122, 2812-2830, doi:10.1002/2016JD026178.
[51] Huang, C.S., and Kelley, M.C. (1996), Numerical simulations of gravity wave modulation of midlatitude sporadic E layers. J. Geophys. Res., 101, 24533- 24543.
[52] Hysell, D. L., and J. D. Burcham (2000), The 30-MHz radar interferometer studies of midlatitude E region irregularities, J. Geophys. Res., 105, 12,797 - 12,812.
[53] Hysell, D. L., M. Yamamoto, and S. Fukao (2002), Imaging radar observations and theory of type I and type II quasi-periodic echoes, J. Geophys. Res., 107(A11), 1360, doi:10.1029/2002JA009292.
[54] JIN Hidekatsu (2009), Ionospheric Dynamo Process, Journal of the National Institute of Information and Communications Technology, Vol.56 Nos.1-4.
[55] Kelley, M. C. (1989), The Earth’s Ionosphere, Academic, San Diego, Califor- nia.
[56] Kelley, Michael C.(2009), The earth’s ionosphere: plasma physics and electro- dynamics, Second Edition, Elsevier Inc., UK.

[57] Kintner, P.M., Brent M. Ledvina (2005), The ionosphere, radio navigation, and global navigation satellite systems, Advances in Space Research, 35, 788- 811.
[58] Koehler,J.A., C.Haldoupis, K.Schlegel,and V.Virvilis (1997), Simultaneous ob- servations of E region coherent radar echoes at 2-m and 6-m radio wavelengths at midlatitude, J.Geophys.Res., 102, 17,255-17,265.
[59] Kopp, E. (1997), On the abundance of metal ions in the lower ionosphere, J. Geophys. Res., 102, 9667-9674.
[60] Larsen, M. F.(2000), A shear instability seeding mechanism for quasiperiodic radar echoes, J. Geophys. Res., vol. 105, no. A11, pp. 24931-24940,
[61] LeLong, M.-P., and T. J. Dunkerton (1998b), Inertia-gravity wave breaking in three dimensions, 2, Convectively unstable waves, J. Atmos. Sci., 55, 2489- 2501.
[62] Li, J., Collins, R., Lu, X., and Williams, B. (2021). Lidar observations of in- stability and estimates of vertical eddy diffusivity induced by gravity wave breaking in the Arctic mesosphere. Journal of Geophysical Research: Atmo- spheres, 126, e2020JD033450.
[63] Li, T., C.-Y. She, H.-L. Liu, T. Leblanc, and I. S. McDermid (2007), Sodium lidar-observed strong inertia-gravity wave activities in the mesopause region over Fort Collins, Colorado (41oN, 105oW), J. Geophys. Res., 112, D22104, doi:10.1029/2007JD008681.

[64] Li, Z., L. Liu, W. Wan, and B. Ning (2011), Neutral wind.driven gradient drift instability in the low-latitude daytime E region, J. Geophys. Res., 116, A03314, doi:10.1029/2010JA016166.
[65] Li, T., T. Leblanc, I. S. McDermid, D. L. Wu, X. Dou, and S. Wang (2010), Seasonal and inter-annual variability of gravity wave activity revealed by long- term lidar observations over Mauna Loa Observatory, Hawaii, J. Geophys. Res., 115, D13103, doi:10.1029/2009JD013586.
[66] Lin, T.-H., Y.-H. Chu, C.-L. Su, and K.-F. Yang (2019), Radar phase offset estimate using ionospheric field-aligned irregularities and aircraft. Terr. Atmos. Ocean. Sci., 30, 803-820, doi: 10.3319/TAO.2019.05.09.01.
[67] Lindzen, R. S. (1981), Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707- 9714.
[68] Liu, A. Z., R. G. Roble, J. H. Hecht, M. F. Larsen, and C. S. Gardner (2004), Unstable layers in the mesopause region observed with Na lidar during the Turbulent Oxygen Mixing Experiment (TOMEX) campaign, J. Geophys. Res., 109, D02S02, doi:10.1029/2002JD003056.
[69] Liu, H. L., P. B. Hays, and R. G. Roble (1999), A numerical study of gravity wave breaking and impacts on turbulence and mean state, J. Atmos. Sci., 56, 2152- 2177.
[70] MacDougall, J.W., J.M. Plane, P.T. Jayachandran (2000), Polar cap Sporadic E: part 2, modeling. J. Atmos. Sol.-Terr. Phys. 62, 1169-1176.

[71] Mahafza, Bassem R. (2000), Radar Systems Analysis and Design Using MAT- LAB, Chapman and Hall/CRC, Boca Raton, FL.
[72] Mahafza, Bassem R. (2009), Radar Systems Analysis and Design Using MAT- LAB, Chapman and Hall/CRC, New York.
[73] Mahafza, Bassem R. (2013), Radar Systems Analysis and Design Using MAT- LAB, Third Edition, Chapman and Hall/CRC, New York.
[74] Mark A. Richards, James A. Scheer, William A. Holm, (2010), Principles of modern radar. Vol. I: Basic Principles,SciTech.
[75] Mathews, J.D., Machuga, D.W., Zhou, Q. (2001), Evidence for electrodynamic linkages between spread-F, ionrain, the intermediate layer, and sporadic E: re- sults from observations and simulations.J.Atmos.Sol.-Terr.Phys.63,1529-1543.
[76] Meriwether, J. W., and Gardner, C. S. (2000), A review of the mesosphere inversion layer phenomenon, J. Geophys. Res., 105, 12,405- 12,416.
[77] Merrill I. Skolnik (1990), Radar handbook, Second Edition, McGraw-Hill, United States of America.
[78] Morse, F.A., Edgar, B.C., Koons, H.C., Rice, C.J., Heikkila, W.J., Hoffman, J.H., et al. (1977), Equion, an equatorial ionospheric irregularity experiment.
J. Geophys. Res. Atmos. 82 (4), 578-592.

[79] Murakoa, Y., T. Sugiyama, K. Kawahira, T. Sato, and T. Tsuda (1988), Cause of a monochromatic inertia-gravity wave breaking observed by the Mu radar, Geophys. Res. Lett., 15, 1349-1352, doi:10.1029/GL015i012p01349.

[80] Muraoka, Y., K. Kawahira, T. Sato, T. Tsuda, and S. Fukao (1987), Character- istics of mesospheric internal gravity waves observed by MU radar, Geophys. Res. Lett., 14, 1154-1157, doi:10.1029/GL014i011p01154.
[81] Murphy, D. J., S. P. Alexander, A. R. Klekociuk, P. T. Love, and R. A. Vincent (2014), Radiosonde observations of gravity waves in the lower strato- sphere over Davis, Antarctica, J. Geophys. Res. Atmos., 119, 11,973-11,996, doi:10.1002/2014JD022448.
[82] Nappo, C. J. (2013), An introduction to atmospheric gravity waves, second edition, USA.
[83] Nastrom, G. D., and F. D. Eaton (2006), Quasi-monochromatic inertia gravity waves in the lower stratosphere from MST radar observations, J. Geophys. Res., 111, D19103, doi:10.1029/2006JD007335.
[84] Nicolls, M. J., R. H. Varney, S. L. Vadas, P. A. Stamus, C. J. Heinselman, R.
B. Cosgrove, and M. C. Kelley (2010), Influence of an inertia-gravity wave on mesospheric dynamics: A case study with the Poker Flat Incoherent Scatter Radar, J. Geophys. Res., 115, D00N02, doi:10.1029/2010JD014042.
[85] Nygren, T., L. Jalonen, J. Oksman, and T. Turunen (1984), The role of electric field and neutral wind direction in the formation sporadic E layers, J. Atmos. Terr. Phys., 46,373.
[86] Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., Fukao, S. (2007), Simultaneous observations of nighttime medium-scale traveling iono- spheric disturbances and E region field-aligned irregularities at midlatitude.

J.Geophys.Res. 112, A06317, doi.org/10.1029/2005JA011548.

[87] Providakes, J., D.T.Farley, B.G.Fejer, J. Sahr, W.E. Swartz, I. Hxggstrbm, A. Hedberg, and J. A. Nordling (1988), Observations of aurora1 E-region plasma waves and electron beating with EISCAT and a VHF radar interferometer,
Journal of Atmospheric and Terrestrrial Physics, 50, 339-356

[88] Richmond, A. D. (October 14, 2016), Ionospheric Electrodynamics.

[89] Riggin, D., Swartz, W.E., Providakes, J., Farly, D.T. (1986), Radar studies of long-wavelength waves associated with midlatitude sporadic E layers. Journal of Geophysical Research 91, 8011-8024.
[90] Roddy, P. A., G. D. Earle, C. M. Swenson, C. G. Carlson, and T. W. Bul- lett (2004), Relative concentrations of molecular and metallic ions in midlat- itude intermediate and sporadic E layers, Geophys. Res. Lett., 31, L19807, doi:10.1029/2004GL020604.
[91] Sahr, J.D., Farley, D.T., Swartz, W.E., Providakes, J.F. (1991), The altitude of type 3 auroral irregularities: radar interferometer observations and impli- cations. Journal of Geophysical Research 96, 17,805.
[92] Saito, S., M. Yamamoto, H. Hashiguchi, A. Maegawa, and A. Saito (2007), Observational evidence of coupling between quasiperiodic echoes and medi- umscale traveling ionospheric disturbances, Ann. Geophys., 25, 2185-2194.
[93] Serafimovich, A., P. Hoffmann, D. Peters, and V. Lehmann (2005), Investi- gation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars, Atmos. Chem. Phys., 5, 295-310.
[94] Shalimov, S., C. Haldoupis, and K. Schlegel (1998), Large polarization electric fields associated with midlatitude sporadic E, J. Geophys. Res., 103, 11,617 - 11,625.
[95] Shibuya, R. and Sato, K. (2019), A study of the dynamical characteristics of inertiagravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model, Atmos. Chem. Phys., 19, 3395-3415, doi:10.5194/acp-19-3395-2019.
[96] Shinagawa, H., Y. Miyoshi, H. Jin, and H. Fujiwara (2017), Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA, J. Geophys. Res. Space Physics, 122, 4450-4465, doi:10.1002/2016JA023778.
[97] Shoichiro Fukao and Kyosuke Hamazu (2014), Radar for Meteorological and Atmospheric Observations. Springer Tokyo Heidelberg New York Dordrecht London, ISBN 978-4-431-54333-6, DOI 10.1007/978-4-431-54334-3.
[98] Snively, J. B., and V. P. Pasko (2003), Breaking of thunderstormgenerated gravity wave as a source of short-period ducted waves in mesopause altitudes, Geophys. Res. Lett., 30(24), 2254, doi:10.1029/2003GL018436.
[99] Sudan, R.N. (1983), Unified theory of type-I and type-II irregularities in the equatorial electrojet. Journal of Geophysical Research 88, 4853-4860.

[100] Tanaka, T., Venkateswaran, S.V. (1982), Characteristics of fieldaligned E- region irregularities over Ioka (36o), Japan, I. Journal of Atmospheric Terres- trial Physics 44, 381-394.
[101] Tsunoda, R.T. (2008), On blanketing sporadic E and polarization ef- fects near the equatorial electrojet, J. Geophys. Res., 113, A09304, doi:10.1029/2008JA013158.
[102] Wang, C. Y. and Y. H. Chu (2001), Interferometry investigations of blob- like sporadic E plasma irregularity using the ChungLi VHF radar. J. Atmos. Sol.-Terr. Phys., 63, 123-133, doi: 10.1016/S1364-6826(00)00141-3.
[103] Wang, C. Y., Y. H. Chu, C. L. Su, R.-M. Kuong, H.-C. Chen, and
K. F. Yang (2011), Statistical investigations of layer-type and clump-type plasma structures of 3-m field-aligned irregularities in nighttime sporadic E region made with Chung-Li VHF radar, J. Geophys. Res., 116, A12311, doi:10.1029/2011JA016696.
[104] Whitehead, J. D. (1989), Recent work on mid-latitude and equatorial sporadic- E, J. Atmos. Terr. Phys., 51, 401-424.
[105] William L. Melvin and James A. Scheer (2013), Principles of Modern Radar Vol. II: Advanced Techniques, SciTech.
[106] William L. Melvin and James A. Scheer (2014), Principles of Modern Radar Vol. III: Radar Applications,SciTech.
[107] Williams, B. P., D. C. Fritts, L. Wang, C. Y. She, J. D. Vance, F. J. Schmidlin,
R. A. Goldberg, A. Mullemann, and F.-J. Lubken (2004), Gravity waves in the arctic mesosphere during the MaCWAVE/MIDAS summer rocket program, Geophys. Res. Lett., 31, L24S05, doi:10.1029/2004GL020049.
[108] Wing, R.; Martic, M.; Triplett, C.;Hauchecorne, A.; Porteneuve, J.; Keckhut, P.; Courcoux, Y.; Yung, L.; Retailleau, P.; Cocuron, D., Gravity Wave Break- ing Associated with Mesospheric Inversion Layers as Measured by the Ship- Borne BEM Monge Lidar and ICON-MIGHT. Atmosphere 2021, 12, 1386. https://doi.org/10.3390/atmos12111386.
[109] Wu, D. L., Ao, C. O., Hajj, G. A., de la Torre Juarez, M., and Mannucci,
A. J. (2005), Sporadic E morphology from GPS-CHAMP radio occultation, J. Geophys. Res., 110, A01 306, doi:10.1029/2004JA010701.
[110] Yamamoto, M., Fukao, S., Woodman, R.F., Ogawa, T., et al. (1991), Mid- latitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res. 96 (A9), 15943-15949.
[111] Yamamoto, M., Komoda, N., Fukao, S., Tsunoda, R.T., Ogawa, T., Tsuda,
T. (1994), Spatial structure of the E-region field aligned irregularities revealed by the MU radar. Radio Science 29, 337-347.
[112] Yamamoto, M., T. Tsuda, S. Kato, T. Sato, and S. Fukao (1987), A sat- urated internal gravity waves in the mesosphere observed by the middle and upper atmosphere radar, J. Geophys. Res., 92(D10), 11,993-11,999, doi:10.1029/JD092iD10p11993.

[113] Yokoyama, T., M. Yamamoto, and S. Fukao (2003), Computer simulation of polarization electric fields as a source of midlatitude field-aligned irregularities, J. Geophys. Res., 108(A2), 1054, doi:10.1029/ 2002JA009513.
[114] Yuan, T., P.-D. Pautet, Y. Zhao, X. Cai, N. R. Criddle, M. J. Taylor, and
W. R. Pendleton Jr. (2014b), Coordinated investigation of midlatitude up- per mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah, J. Geophys Res. Atmos., 119, 3756-3769, doi:10.1002/2013JD020586.
[115] Yuan, T., Stevens, M. H., Englert, C. R., and Immel, T. J. (2021). Temperature tides across the mid-latitude summer turbopause measured by a sodium lidar and MIGHTI/ICON. Journal of Geophysical Research: Atmospheres, 126, e2021JD035321.
[116] Zolesi, B., Lj.R. Cander (2006), Effects of the upper atmosphere on terrestrial and Earth-space communications: Final results of the EU COST 271 Action, Advances in Space Research, 37, 1223-1228.
指導教授 朱延祥(Yen-Hsyang Chu) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明