參考文獻 |
1. Wu, J.C., et al., Genotoxicity of dicrotophos, an organophosphorous pesticide, assessed with different assays in vitro. Environ Toxicol, 2012. 27(5): p. 307-15.
2. Hseu, Y.C., et al., Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food Chem Toxicol, 2017. 103: p. 253-260.
3. <2002 Dic Facts (from EPA).pdf>.
4. Ore, O.T., et al., Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environmental Chemistry and Ecotoxicology, 2023. 5: p. 9-23.
5. Pirsaheb, M., et al., Occurrence of Residual Organophosphorus Pesticides in soil of some Asian countries, Australia and Nigeria. IOP Conference Series: Materials Science and Engineering, 2020. 737(1).
6. Naughton, S.X. and A.V. Terry, Jr., Neurotoxicity in acute and repeated organophosphate exposure. Toxicology, 2018. 408: p. 101-112.
7. Mulla, S.I., et al., Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation, in Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management, G. Saxena and R.N. Bharagava, Editors. 2020, Springer Singapore: Singapore. p. 265-290.
8. Hu, L., et al., The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis. Environ Pollut, 2017. 231(Pt 1): p. 319-328.
9. Koutros, S., et al., Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environ Int, 2019. 127: p. 199-205.
10. Yang, K.J., J. Lee, and H.L. Park, Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. Int J Environ Res Public Health, 2020. 17(14).
11. Thakur, S., et al., Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells. J Biochem Mol Toxicol, 2021. 35(2): p. e22640.
12. Koutros, S., et al., Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol, 2013. 177(1): p. 59-74.
13. Pardo, L.A., et al., Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators. Environ Health, 2020. 19(1): p. 30.
14. Donley, N., The USA lags behind other agricultural nations in banning harmful pesticides. Environ Health, 2019. 18(1): p. 44.
15. Ellsworth, P.C. and A. Fournier, Highly Hazardous Pesticide Phase-Out for US Cotton Growers: Alternatives, Risks, and Opportunities. 2022.
16. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8.
17. Cannataro, V.L., J.D. Mandell, and J.P. Townsend, Attribution of Cancer Origins to Endogenous, Exogenous, and Preventable Mutational Processes. Mol Biol Evol, 2022. 39(5).
18. Oliveira, A.I.F.-R.a.P.A., Oxford Textbook of Oncology, ed. D.J. Kerr, et al. 2016: Oxford University Press.
19. Smith, M.T., et al., Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ Health Perspect, 2016. 124(6): p. 713-21.
20. Li, D., et al., The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere, 2015. 135: p. 387-93.
21. Arteaga-Gómez, E., et al., Cytogenotoxicity of selected organophosphate insecticides on HaCaT keratinocytes and NL-20 human bronchial cells. Chemosphere, 2016. 145: p. 174-84.
22. Zepeda-Arce, R., et al., Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ Toxicol, 2017. 32(6): p. 1754-1764.
23. Ahmad, A., A. Zafar, and M. Ahmad, Mitigating effects of apigenin on edifenphos-induced oxidative stress, DNA damage and apoptotic cell death in human peripheral blood lymphocytes. Food and Chemical Toxicology, 2019. 127: p. 218-227.
24. D’Costa, A.H., et al., Induction of DNA damage in the peripheral blood of zebrafish (Danio rerio) by an agricultural organophosphate pesticide, monocrotophos. International Aquatic Research, 2018. 10(3): p. 243-251.
25. Dias, R., et al., DNA damage and biochemical responses in estuarine bivalve Donax incarnatus (Gmelin, 1791) exposed to sub-lethal concentrations of an organophosphate pesticide monocrotophos. Environ Monit Assess, 2021. 193(6): p. 317.
26. Sonzogni, L., et al., DNA Double-Strand Breaks Induced in Human Cells by 6 Current Pesticides: Intercomparisons and Influence of the ATM Protein. Biomolecules, 2022. 12(2).
27. Xu, D., et al., Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environ Pollut, 2018. 238: p. 1048-1055.
28. Yu, S., et al., Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos. Aquat Toxicol, 2015. 159: p. 256-66.
29. Saad-Hussein, A., et al., GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutat Res Genet Toxicol Environ Mutagen, 2017. 819: p. 20-25.
30. Ceja Galvez, H.R., et al., Genetic profile for the detection of susceptibility to poisoning by exposure to pesticides. Ann Agric Environ Med, 2021. 28(2): p. 208-213.
31. Parker, A.M., et al., UV/H(2)O(2) advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays. Chemosphere, 2017. 182: p. 477-482.
32. Hossain, M.A., Y. Lin, and S. Yan, Single-Strand Break End Resection in Genome Integrity: Mechanism and Regulation by APE2. Int J Mol Sci, 2018. 19(8).
33. Kumar, N., et al., Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol, 2020. 43(1 suppl. 1): p. e20190104.
34. Kim, D.V., et al., Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des, 2019. 25(3): p. 298-312.
35. Marteijn, J.A., et al., Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol, 2014. 15(7): p. 465-81.
36. Barry, K.H., et al., Genetic variation in base excision repair pathway genes, pesticide exposure, and prostate cancer risk. Environ Health Perspect, 2011. 119(12): p. 1726-32.
37. Barry, K.H., et al., Genetic variation in nucleotide excision repair pathway genes, pesticide exposure and prostate cancer risk. Carcinogenesis, 2012. 33(2): p. 331-7.
38. Sanders, L.H., et al., Editor′s Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson′s Disease Risk. Toxicol Sci, 2017. 158(1): p. 188-198.
39. Rumsey, W.L., et al., Effects of airborne toxicants on pulmonary function and mitochondrial DNA damage in rodent lungs. Mutagenesis, 2017. 32(3): p. 343-353.
40. Zuo, Z., et al., Exposure to tributyltin and triphenyltin induces DNA damage and alters nucleotide excision repair gene transcription in Sebastiscus marmoratus liver. Aquat Toxicol, 2012. 122-123: p. 106-12.
41. Giglia-Mari, G., A. Zotter, and W. Vermeulen, DNA damage response. Cold Spring Harb Perspect Biol, 2011. 3(1): p. a000745.
42. Pannunzio, N.R., G. Watanabe, and M.R. Lieber, Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem, 2018. 293(27): p. 10512-10523.
43. Gonzalez, D. and A. Stenzinger, Homologous recombination repair deficiency (HRD): From biology to clinical exploitation. Genes Chromosomes Cancer, 2021. 60(5): p. 299-302.
44. Frappart, P.O. and P.J. McKinnon, Mouse models of DNA double-strand break repair and neurological disease. DNA Repair (Amst), 2008. 7(7): p. 1051-60.
45. Costa, M.B., et al., Chromosomal abnormalities and dysregulated DNA repair gene expression in farmers exposed to pesticides. Environ Toxicol Pharmacol, 2021. 82: p. 103564.
46. Wahyuni, E.A., et al., The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. Sci Total Environ, 2021. 758: p. 143597.
47. Scandolara, T.B., et al., Somatic DNA Damage Response and Homologous Repair Gene Alterations and Its Association With Tumor Variant Burden in Breast Cancer Patients With Occupational Exposure to Pesticides. Front Oncol, 2022. 12: p. 904813.
48. Liu, D., G. Keijzers, and L.J. Rasmussen, DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res Rev Mutat Res, 2017. 773: p. 174-187.
49. Schofield, M.J. and P. Hsieh, DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol, 2003. 57: p. 579-608.
50. He, Y., et al., The role of DNA mismatch repair in immunotherapy of human cancer. Int J Biol Sci, 2022. 18(7): p. 2821-2832.
51. Vimal, D., et al., Atrazine or bisphenol A mediated negative modulation of mismatch repair gene, mlh1 leads to defective oogenesis and reduced female fertility in Drosophila melanogaster. Chemosphere, 2019. 225: p. 247-258.
52. Ren, J., et al., The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One, 2019. 14(8): p. e0220500.
53. Hsu, T., et al., Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos. Aquat Toxicol, 2013. 126: p. 9-16.
54. Liu, X. and Z.R. Craig, Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary†. Biol Reprod, 2019. 101(4): p. 854-867.
55. Driessens, N., et al., Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer, 2009. 16(3): p. 845-56.
56. Ko, E., K.Y. Lee, and D.S. Hwang, Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev, 2012. 21(11): p. 1877-86.
57. Vodenkova, S., et al., An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc, 2020. 15(12): p. 3844-3878.
58. Lu, Y., Y. Liu, and C. Yang, Evaluating In Vitro DNA Damage Using Comet Assay. J Vis Exp, 2017(128).
59. Lin, H.D., et al., 4-Aminobiphenyl suppresses homologous recombination repair by a reactive oxygen species-dependent p53/miR-513a-5p/p53 loop. Toxicology, 2020. 444: p. 152580.
60. Lin, H.D., et al., 4-Aminobiphenyl inhibits the DNA homologous recombination repair in human liver cells: The role of miR-630 in downregulating RAD18 and MCM8. Toxicology, 2020. 440: p. 152441.
61. Weterings, E., et al., A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair (Amst), 2016. 43: p. 98-106.
62. Lozano-Paniagua, D., et al., Evaluation of conventional and non-conventional biomarkers of liver toxicity in greenhouse workers occupationally exposed to pesticides. Food Chem Toxicol, 2021. 151: p. 112127.
63. Saad-Hussein, A., et al., Early prediction of liver carcinogenicity due to occupational exposure to pesticides. Mutat Res Genet Toxicol Environ Mutagen, 2019. 838: p. 46-53.
64. VoPham, T., et al., Pesticide exposure and liver cancer: a review. Cancer Causes Control, 2017. 28(3): p. 177-190.
65. Wang, T., et al., Three widely used pesticides and their mixtures induced cytotoxicity and apoptosis through the ROS-related caspase pathway in HepG2 cells. Food Chem Toxicol, 2021. 152: p. 112162.
66. Zhang, N., et al., Evaluation of toxicological effects of organophosphorus pesticide metabolites on human HepG2 cells. Environ Toxicol Pharmacol, 2021. 88: p. 103741.
67. Wei, H., et al., Prenatal exposure to pesticides and domain-specific neurodevelopment at age 12 and 18 months in Nanjing, China. Environ Int, 2023. 173: p. 107814.
68. Azqueta, A., et al., Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? Mutat Res Genet Toxicol Environ Mutagen, 2022. 881: p. 503520.
69. Collins, A.R., S.J. Duthie, and V.L. Dobson, Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 1993. 14(9): p. 1733-5.
70. Grundy, G.J. and J.L. Parsons, Base excision repair and its implications to cancer therapy. Essays Biochem, 2020. 64(5): p. 831-843.
71. Meira, L.B., N.E. Burgis, and L.D. Samson, Base excision repair. Adv Exp Med Biol, 2005. 570: p. 125-73.
72. Valverde, M., et al., Hydrogen Peroxide-Induced DNA Damage and Repair through the Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int, 2018. 2018: p. 1615497.
73. D′Augustin, O., et al., Lost in the Crowd: How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome? Int J Mol Sci, 2020. 21(21).
74. Thakur, S., M. Dhiman, and A.K. Mantha, APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Mol Cell Biochem, 2018. 441(1-2): p. 201-216.
75. Alleva, R., et al., Mechanism underlying the effect of long-term exposure to low dose of pesticides on DNA integrity. Environ Toxicol, 2018. 33(4): p. 476-487.
76. Whitaker, A.M., et al., Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed), 2017. 22(9): p. 1493-1522.
77. Schärer, O.D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012609.
78. Melis, J.P., H. van Steeg, and M. Luijten, Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal, 2013. 18(18): p. 2409-19.
79. Wang, Y., Bulky DNA lesions induced by reactive oxygen species. Chem Res Toxicol, 2008. 21(2): p. 276-81.
80. Lee, T.-H. and T.-H. Kang, DNA Oxidation and Excision Repair Pathways. 2019. 20(23): p. 6092.
81. Kaur, K. and R. Kaur, Modulation of DNA damage by XPF, XPG and ERCC1 gene polymorphisms in pesticide-exposed agricultural workers of Punjab, North-West India. Mutat Res Genet Toxicol Environ Mutagen, 2021. 861-862: p. 503302.
82. Roy, I.M., P.S. Nadar, and S. Khurana, Neutral Comet Assay to Detect and Quantitate DNA Double-Strand Breaksin Hematopoietic Stem Cells. Bio Protoc, 2021. 11(16): p. e4130.
83. Lu, J., et al., Exposure to environmental concentrations of natural pyrethrins induces hepatotoxicity: Assessment in HepG2 cell lines and zebrafish models. Chemosphere, 2022. 288(Pt 2): p. 132565.
84. Zhao, F., et al., Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos. Fish Physiol Biochem, 2015. 41(3): p. 613-24.
85. Kuo, L.J. and L.X. Yang, Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo, 2008. 22(3): p. 305-9.
86. Collins, P.L., et al., DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nature Communications, 2020. 11(1): p. 3158.
87. Molinaro, C., A. Martoriati, and K. Cailliau, Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel), 2021. 13(15).
88. Huang, P., et al., Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells. Int J Mol Sci, 2015. 16(7): p. 14353-68.
89. Yu, Y., et al., A comparative study of using comet assay and gammaH2AX foci formation in the detection of N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage. Toxicol In Vitro, 2006. 20(6): p. 959-65.
90. Kurashige, T., M. Shimamura, and Y. Nagayama, Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine. J Radiat Res, 2016. 57(3): p. 312-7.
91. Nikolova, T., F. Marini, and B. Kaina, Genotoxicity testing: Comparison of the γH2AX focus assay with the alkaline and neutral comet assays. Mutat Res Genet Toxicol Environ Mutagen, 2017. 822: p. 10-18.
92. Bukowski, K., et al., Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro. Molecules, 2022. 27(12).
93. Viau, M., et al., Cadmium inhibits non-homologous end-joining and over-activates the MRE11-dependent repair pathway. Mutat Res, 2008. 654(1): p. 13-21.
94. Zeng, H., et al., Circular RNA circ_Cabin1 promotes DNA damage in multiple mouse organs via inhibition of non-homologous end-joining repair upon PM(2.5) exposure. Arch Toxicol, 2021. 95(10): p. 3235-3251.
95. Liu, J., et al., Fine particulate matter exposure induces DNA damage by downregulating Rad51 expression in human bronchial epithelial Beas-2B cells in vitro. Toxicology, 2020. 444: p. 152581.
96. Yang, X., et al., Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway. Carcinogenesis, 2019. 40(8): p. 1021-1030.
97. Suárez-Larios, K., A.-M. Salazar-Martínez, and R. Montero-Montoya, Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair. Journal of Toxicology, 2017. 2017: p. 3574840.
98. Rossner, P., Jr., et al., Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants. Mutat Res, 2014. 763-764: p. 28-38.
99. Doukas, S.G., et al., The Effect of Tobacco Smoke N-Nitrosamines, NNK and NDEA, and Nicotine, on DNA Mismatch Repair Mechanism and miRNA Markers, in Hypopharyngeal Squamous Cell Carcinoma: An In Vivo Model and Clinical Evidence. Curr Oncol, 2022. 29(8): p. 5531-5549.
100. Lo, Y.L., et al., Polymorphisms of MLH1 and MSH2 genes and the risk of lung cancer among never smokers. Lung Cancer, 2011. 72(3): p. 280-6.
101. Gargiulo, S., et al., Germline MLH1 and MSH2 mutations in Italian pancreatic cancer patients with suspected Lynch syndrome. Fam Cancer, 2009. 8(4): p. 547-53.
102. Haron, N.H., et al., Microsatellite Instability and Altered Expressions of MLH1 and MSH2 in Gastric Cancer. Asian Pac J Cancer Prev, 2019. 20(2): p. 509-517.
103. Li, Q., M. Kobayashi, and T. Kawada, Carbamate pesticide-induced apoptosis in human T lymphocytes. Int J Environ Res Public Health, 2015. 12(4): p. 3633-45.
104. Ishikawa, K., H. Ishii, and T. Saito, DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol, 2006. 25(7): p. 406-11.
105. Zhivotovsky, B. and S. Orrenius, Cell cycle and cell death in disease: past, present and future. J Intern Med, 2010. 268(5): p. 395-409.
106. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
107. Shieh, P., C.R. Jan, and W.Z. Liang, The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology, 2019. 417: p. 1-14.
108. Huo, D., et al., Omethoate induces pharyngeal cancer cell proliferation and G1/S cell cycle progression by activation of Akt/GSK-3β/cyclin D1 signaling pathway. Toxicology, 2019. 427: p. 152298. |