博碩士論文 110821022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:156 、訪客IP:18.225.98.100
姓名 呂文廷(Wen-Ting Lu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探索人類核酸內切酶EndoG切除氧化損傷的核酸之方式
(Exploring the molecular basis of human Endonuclease G in removal of oxidative damaged DNA)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) Endonuclease G(EndoG)是真核生物中演化上共同保留下來的內切酶,主要位於粒線體内。目前研究已經提出EndoG可能參與粒線體DNA(mtDNA)複製、在氧化壓力下維持mtDNA完整性,並在細胞凋亡和早期胚胎發育期間降解细胞核DNA。然而,目前仍不清楚EndoG作用的核酸受質是什麼,以及EndoG如何優先切割這些核酸。為了回答這些問題,首先我們的研究重點是探討人類EndoG(hEndoG)其在結合和切割各種核酸受質方面的偏好,包括單股DNA(ssDNA)、雙股DNA(dsDNA)、有缺口的dsDNA(gapped dsDNA)、有切口的dsDNA(nicked dsDNA)、攜帶氧化鳥嘌呤的dsDNA(oxoG-DNA)和5-羥甲基胞嘧啶修飾的dsDNA(5hmC-DNA),以及單股RNA(ssRNA)和RNA/DNA混合雙股。我們的研究结果發現,hEndoG對ssDNA、ssRNA、dsDNA和有修飾的dsDNA的結合親和力高出RNA/DNA混合雙股約10倍。此外,hEndoG偏好切割受到氧化損傷的DNA,包括gapped dsDNA, nicked dsDNA和oxoG-DNA。在降解有缺口的和帶切口的dsDNA時,hEndoG優先在帶有缺口或切口位點的對面股上進行切割,而在降解oxoG-DNA和5hmC-DNA時,則優先在攜帶有修飾鹼基股的對面股進行切割。hEndoG的晶體結構顯示出二聚體構象,具有一對His-Me finger motif用於核酸結合和切割。我們建構了hEndoG與ssDNA和有gapped dsDNA结合的結構模型,顯示它偏好切割ssDNA和gapped dsDNA,可能是因為這類核酸分子較易彎曲,導致且其切割位點的磷酸分子與位於His-Me finger motif中的Mg2+離子距離較近,較易進行水解反應。總結來說,我們的結果支持hEndoG在氧化壓力條件下,擔任切割並去除氧化傷害的DNA,扮演著維護粒線體基因完整性的關鍵角色。
摘要(英) Endonuclease G (EndoG) is an evolutionarily conserved endonuclease in eukaryotes primarily located in mitochondria. EndoG has been suggested to involve in mitochondrial DNA (mtDNA) replication, maintaining mtDNA integrity under oxidative stress and degrading nuclear DNA during apoptosis and early embryogenesis. However, it remains unclear what are the EndoG-targeting nucleic acids substrates, and how could EndoG preferentially cleave these nucleic acids. To address these questions, our study focused on investigating human EndoG (hEndoG) to reveal its preferences in binding and cleaving various nucleic acid substrates, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), nicked dsDNA, gapped dsDNA, modified dsDNA harboring oxidized guanine (oxoG-DNA) and hydroxymethylated cytosine (5hmC-DNA), as well as single-stranded RNA (ssRNA) and RNA/DNA hybrid duplexes. Our findings reveal that hEndoG demonstrates a ~10-fold higher binding affinities for ssDNA, ssRNA, dsDNA, and modified dsDNA over RNA/DNA hybrid duplexes. Moreover, hEndoG exhibits a preference for cleaving oxidatively damaged DNA, including gapped dsDNA, nicked dsDNA, and oxoG-DNA. In degrading gapped and nicked DNA, hEndoG preferentially cleaves at the opposite strand of the gapped/nicked site, whereas in degrading oxoG-DNA and 5hmC-DNA, it preferentially cleaves at the opposite strand of the one harboring the modified base. The crystal structure of hEndoG was determined revealing a dimeric conformation with a pair of His-Me finger motifs for nucleic acid binding and cleavage. We constructed structural models of hEndoG bound with ssDNA and gapped DNA, showing that it prefers to cleave ssDNA and gapped DNA likely because these nucleic acids could adopt kinked DNA structures with a scissile phosphate located closely to the catalytic Mg2+ ion in the His-Me finger motif. Overall, our results strongly support the notion that hEndoG plays a critical role in safeguarding mitochondrial genome integrity under oxidative stress conditions by targeting and removing oxidatively damaged DNA.
關鍵字(中) ★ 核酸內切酶 關鍵字(英) ★ EndoG
論文目次 Contents
中文摘要 II
Abstract III
List of figures VI
List of Tables VII
I. Introduction 1
1. Discovery of EndoG 1
2. Sequence and structure of EndoG 1
3. Biological functions of EndoG 2
3.1 EndoG participates in RNA primer generation in mitochondrial DNA replication 2
3.2 EndoG degrades nuclear DNA during apoptosis 2
3.3 EndoG maintains mitochondrial DNA levels by removal oxidative-damaged DNA 3
3.4 EndoG participates in nuclear DNA recombination 4
3.5 EndoG eliminates paternal DNA in mitochondria upon fertilization 4
3.6 EndoG activates nuclear DNA damage response and autophagy 5
3.7 EndoG is linked to mitochondrial genome instability by cleaving mtDNA next to G-quadruplex structures 5
4. Specific aims 6
II. Materials and Methods 7
1. Expression and purification of hEndoG WT and hEndoG H141A mutant 7
2. Measurement of dissociation constant (KD) between hEndoG and nucleic acid substrates 8
3. Measurement of the nuclease activity of hEndoG 8
4. Co-crystallization of hEndoG with gapped DNA 9
5. Constructing the molecular model of hEndoG bound with DNA 9
III. Results 11
1. Wild-type hEndoG and the hEndoG H141A mutant were expressed and purified 11
2. The hEndoG H141A mutant loses its endonuclease activity 11
3. hEndoG H141A binds different types of substrates with similar affinities 12
4. hEndoG prefers to cleave nicked and gapped dsDNA 13
5. The structural models of hEndoG bound with DNA 13
IV. Discussion 14
VI. Tables 16
VII. References 17
V. Figures 19
參考文獻 VII. References

1. Curtis, P., M.G. Burdon, and R. Smellie, The purification from rat liver of a nuclease hydrolysing ribonucleic acid and deoxyribonucleic acid. Biochemical Journal, 1966. 98(3): p. 813.
2. Linn, S. and I. Lehman, An endonuclease from mitochondria of Neurospora crassa. Journal of Biological Chemistry, 1966. 241(11): p. 2694-2699.
3. Low, R.L., Mitochondrial Endonuclease G function in apoptosis and mtDNA metabolism: a historical perspective. Mitochondrion, 2003. 2(4): p. 225-236.
4. Ruiz‐Carrillo, A. and J. Renaud, Endonuclease G: a (dG) n X (dC) n‐specific DNase from higher eukaryotes. The EMBO Journal, 1987. 6(2): p. 401-407.
5. Loll, B., et al., Crystal structure of the EndoG/EndoGI complex: mechanism of EndoG inhibition. Nucleic Acids Rsearch, 2009. 37(21): p. 7312-7320.
6. Lin, J.L., et al., Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer. Nucleic Acids Research, 2016. 44(21): p. 10480-10490.
7. Park, K.-H., et al., Crystal structure of the mouse endonuclease G. Biochemical and Biophysical Research Communications, 2020. 526(1): p. 35-40.
8. Wu, C.-C., J.L. Lin, and H.S. Yuan, Structures, mechanisms, and functions of His-Me finger nucleases. Trends in Biochemical Sciences, 2020. 45(11): p. 935-946.
9. Côté, J. and A. Ruiz-Carrillo, Primers for mitochondrial DNA replication generated by endonuclease G. Science, 1993. 261(5122): p. 765-769.
10. van Loo, G., et al., Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death & Differentiation, 2001. 8(12): p. 1136-1142.
11. Li, L.Y., X. Luo, and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 2001. 412(6842): p. 95-99.
12. Irvine, R.A., et al., Generation and characterization of endonuclease G null mice. Molecular and Cellular Biology, 2005. 25(1): p. 294-302.
13. McDermott-Roe, C., et al., Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature, 2011. 478(7367): p. 114-8.
14. Wiehe, R.S., et al., Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget, 2018. 9(26): p. 18309.
15. Shokolenko, I., et al., Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research, 2009. 37: p. 2539-2548.
16. Ikeda, S. and K. Ozaki, Action of mitochondrial endonuclease G on DNA damaged by L-ascorbic acid, peplomycin, and cis-diamminedichloroplatinum (II). Biochemical and Biophysical Research Communications, 1997. 235: p. 291-294.
17. Alexeyev, M., et al., The maintenance of mitochondrial DNA integrity—critical analysis and update. Cold Spring Harbor Perspectives in Biology, 2013. 5: p. a012641.
18. Peeva, V., et al., Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nature Communications, 2018. 9(1): p. 1727.
19. Kornblum, C., et al., Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nature Genetics, 2013. 45(2): p. 214-9.
20. Szczesny, R.J., et al., Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Research, 2013. 41(5): p. 3144-61.
21. Yang, C., et al., Structural insights into DNA degradation by human mitochondrial nuclease MGME1. Nucleic Acids Research, 2018. 46(20): p. 11075-11088.
22. Robertson, A.B., et al., Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. Nucleic Acids Research, 2014. 42(21): p. 13280-13293.
23. Zhou, Q., et al., Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science, 2016. 353(6297): p. 394-399.
24. Wang, W., et al., Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response. Nature communications, 2021. 12(1): p. 476.
25. Wang, W., et al., Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress. Nature Communications, 2023. 14(1): p. 6201.
26. Dahal, S., et al., Unleashing a novel function of Endonuclease G in mitochondrial genome instability. eLife, 2022. 11: p. e69916.
27. Lin, J.L., et al., Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer. Nucleic Acids Research, 2016: p. gkw931.
指導教授 袁小琀 王健家(Hanna S. Yuan) 審核日期 2024-1-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明