博碩士論文 108881601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:3.15.34.233
姓名 禾汀(Candra Dwipayana Hamdin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 雙特異性磷酸酶6在血管平滑肌細胞扮演的角色
(The Role of Dual-specificity Phosphatase 6 in Vascular Smooth Muscle Cells)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 動脈壁的血管平滑肌細胞 (VSMC) 通常表現出分化的收縮表型; 損傷後,VSMC 去分化為增生和遷移表型,導致內膜增生。 細胞外訊號調節激酶 1/2 (ERK1/2) 參與 VSMC 增生和遷移。 雙特異性磷酸酶 6 (DUSP6) 可以使活化的 ERK1/2 去磷酸化。 我們的目標是研究 DUSP6 是否透過調節 VSMC 增殖和遷移而影響阻塞性血管疾病。 利用小鼠內膜增生模型,我們發現正常未受傷的小鼠動脈的 DUSP6 基線水平較低,而損傷後該水平顯著升高。 與野生型小鼠相比,DUSP6全身性缺陷 (Dusp6–/–) 小鼠的新內膜較小。在體外,IL-1β 誘導 DUSP6 表現並增加 VSMC 增生和遷移,而 缺乏DUSP6會減少IL-1β誘導的VSMC增生和遷移。 有趣的是,DUSP6 的缺乏並不影響 IL-1β 刺激後的 ERK1/2 磷酸化。 ERK1/2 抑制劑 U0126 抑制 IL-1β 誘導 的DUSP6表現。 這些數據顯示在VSMC中,ERK1/2作用在DUSP6上游調節DUSP6的表現量,而不是DUSP6下游之作用物。 IL-1β 降低 VSMC 中細胞週期抑制劑 p27 及與細胞遷移有關的細胞間黏附分子 N-鈣黏蛋白的表現量。有趣的是,即使在IL-1β刺激下缺乏 DUSP6 還是會維持p27 和 N-鈣粘蛋白在較高水平。這些數據揭示了 DUSP6 在調節 VSMC 中 p27 和 N-鈣粘蛋白表現量方面的新功能。 綜上所述,我們的結果顯示,缺乏DUSP6 會透過減少 VSMC 增生和遷移來減低動脈損傷後的新內膜形成,這可能是透過維持高 p27 和 N-鈣黏蛋白水平而導至的。
摘要(英) Vascular smooth muscle cells (VSMCs) of the arterial wall normally exhibit a differentiated, contractile phenotype; upon injury, VSMCs dedifferentiate into a proliferative and migratory phenotype, leading to intimal hyperplasia. The extracellular signal-regulated kinase 1/2 (ERK1/2) participates in VSMC proliferation and migration. Dual-specificity phosphatase 6 (DUSP6) can dephosphorylate activated ERK1/2. Our goal was to investigate whether DUSP6 has a role in occlusive vascular disease by regulating VSMC proliferation and migration. Utilizing a mouse neointimal formation model, we showed that uninjured mouse arteries had low baseline protein level of DUSP6, which was significantly increased after injury. Compared with wild-type mice, DUSP6-deficient (Dusp6–/–) mice had smaller neointima. In vitro, IL-1β induced DUSP6 protein expression and increased VSMC proliferation and migration. Lack of DUSP6 decreased IL-1β-induced VSMC proliferation and migration. Intriguingly, lack of DUSP6 did not affect IL-1β-stimulated ERK1/2 phosphorylation. ERK1/2 inhibitor U0126 prevented DUSP6 induction by IL-1β. These data indicate that in VSMCs, ERK1/2 functions upstream of DUSP6 by regulating DUSP6 protein expression rather than downstream as a substrate of DUSP6. IL-1β decreased protein levels of cell cycle inhibitor p27 and cell-cell adhesion molecule N-cadherin in VSMCs. N-cadherin has been implicated in cellular migration. Interestingly, lack of DUSP6 maintained p27 and N-cadherin at high levels. These data reveal novel functions of DUSP6 in regulating p27 and N-cadherin protein levels in VSMCs. Taken together, our results indicate that lack of DUSP6 attenuated neointima formation following arterial injury by reducing VSMC proliferation and migration, which were likely mediated via maintaining high p27 and N-cadherin protein levels.
關鍵字(中) ★ 雙特異性磷酸酶 6
★ 血管重塑
★ 遷移
★ N-鈣黏蛋白
★ 血管平滑肌細胞
★ 增生
★ 細胞週期素激酶抑制劑
關鍵字(英) ★ DUSP6
★ vascular remodeling
★ migration
★ N-cadherin
★ VSMC
★ proliferation
★ p27
論文目次 Table of Contents
Declaration ii
Publications iii
中文摘要 v
Abstract vi
Acknowledgments vii
Table of Contents viii
List of Figures xi
List of Table xiii
Abbreviations xiv
Chapter I Introduction 1
1-1 Prevalence of Cardiovascular Diseases 1
1-2 Vascular Physiology and Structure 2
1-2-1 Vascular function 2
1-2-2 Vascular structure 2
1-2-3 Vascular smooth muscle cells (VSMCs) in a healthy vessel 4
1-3 Vascular Pathophysiology: Restenosis 5
1-3-1 Restenosis and percutaneous development 5
1-3-2 Pathophysiology of restenosis 6
1-3-3 Vascular smooth muscle cells (VSMCs) in restenosis 8
1-4 Mitogen-activated protein kinase (MAPK) pathways 11
1-4-1 MAPK and cardiovascular disease 12
1-4-2 ERK1/2 signaling and restenosis 14
1-5 Dual-specificity phosphatase 6 (DUSP6) in cardiovascular diseases 16
1-6 DUSP6 in Metabolic and Inflammatory Related-diseases 21
1-7 Research Background 22
Chapter II Materials and Methods 25
2-1 Animal Care and Genotyping 25
2-2 Neointimal Hyperplasia Model Procedure 26
2-3 Histomorphometric Analysis and In Vivo Proliferation Assay 26
2-4 Isolation and Culture of Primary VSMCs 27
2-5 ERK1/2 Inhibition 27
2-6 Dusp6 Overexpression and Knockdown 28
2-7 BrdU Proliferation Assay 28
2-8 Protein Analysis and Western Blotting 29
2-9 Wound Healing Assay 29
2-10 Phalloidin Staining 30
2-11 Statistical Analysis 31
Chapter III Results 32
3-1 Arterial Injury Leads to Neointimal Formation and Induces DUSP6 in Mice 32
3-2 Inflammatory Cytokine IL-1β Induces DUSP6 Protein Expression and VSMC Proliferation 33
3-3 DUSP6 Knockdown Attenuates VSMC Proliferation 34
3-4 Deletion of Dusp6 in Mice Mitigates Intimal Hyperplasia after Arterial Injury and Inhibits VSMC Proliferation In Vitro 35
3-5 Deletion of Dusp6 in Mice Reduces BrdU-positive Cells After Arterial Denudation 36
3-6 ERK1/2 Activation Precedes Induction of DUSP6 Protein Expression by IL-1β in VSMCs 36
3-7 Inhibition of ERK1/2 Diminishes DUSP6 Protein Expression and Attenuates VSMC Proliferation 37
3-8 Lack of DUSP6 in VSMCs Increases Cell Cycle Inhibitors of Both Total p27 and Phospho-p27 38
3-9 DUSP6 Deficiency in VSMCs Reduces Cellular Migration Capacity 39
3-10 DUSP6 deletion in VSMCs does not affect Cellular Spreading and Focal Adhesion Assembly-Disassembly instead Reduces Lamellipodia Protrusion 40
3-11 Lack of DUSP6 in VSMCs Augments Basal Protein Levels and Sustains Elevated Levels of N-Cadherin 41
Chapter IV Discussions 43
4-1 General Discussion 43
4-2 Study Limitation 48
Chapter V Conclusions 50
Bibliography 51
Figures 56
Appendix A. List of Antibodies 78
參考文獻 Bibliography
1. Foundation, B.H. Global Heart & Circulatory Diseases Factsheet. 2023 [cited 2023 12 December]; Available from: https://www.bhf.org.uk/-/media/files/for-professionals/research/heart-statistics/bhf-cvd-statistics-global-factsheet.pdf?rev=f323972183254ca0a1043683a9707a01&hash=5AA21565EEE5D85691D37157B31E4AAA.
2. Tsao, C.W., et al., Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circ, 2023. 147(8): p. e93-e621.
3. Yeh, T.L., et al., Cardiovascular Disease Burden Attributable to High Body Mass Index in Taiwan. Acta Cardiol Sin, 2023. 39(4): p. 628-642.
4. I-Chia, L. One-Third of Deaths Linked to Cardiovascular Disease. 2022 Mon, Jul 04, 2022 [cited 2023 November 08]; Available from: https://www.taipeitimes.com/News/taiwan/archives/2022/07/04/2003781110.
5. WHO. Cardiovascular Diseases (CVDs). Key facts 2021 June 11, 2021 [cited 2023 November 2023]; Key facts Cardiovascular diseases (CVDs) are the leading cause of death globally]. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
6. Xu, J. and G.P. Shi, Vascular Wall Extracellular Matrix Proteins and Vascular Diseases. Biochim Biophys Acta, 2014. 1842(11): p. 2106-2119.
7. J. Gordon Betts, K.A.Y., James A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, Mark Womble, Peter DeSaix, Anatomy and Physiology. Structure and Function of Blood Vessels. 2023, Houston, Texas: OpenStax.
8. Bit, A., J.S. Suri, and A. Ranjani, Anatomy and Physiology of Blood Vessels, in Flow Dynamics and Tissue Engineering of Blood Vessels. 2020, IOP Publishing. p. 1-1-1-16.
9. Townsley, M.I., Structure and Composition of Pulmonary Arteries, Capillaries, and Veins, in Compr Physiol. p. 675-709.
10. Qureshi, A.I. and L.R. Caplan, Intracranial Atherosclerosis. The Lancet, 2014. 383(9921): p. 984-998.
11. Worssam, M.D. and H.F. Jørgensen, Mechanisms of Vascular Smooth Muscle Cell Investment and Phenotypic Diversification in Vascular Diseases. Biochem Soc Trans, 2021. 49(5): p. 2101-2111.
12. Wilson, D.P., Vascular Smooth Muscle Structure and Function, in Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists, R. Fitridge and M. Thompson, Editors. 2011, University of Adelaide Press © The Contributors 2011.: Adelaide (AU).
13. Giustino, G., et al., Coronary In-Stent Restenosis: JACC State-of-the-Art Review. J Am Coll Cardiol, 2022. 80(4): p. 348-372.
14. Li, M., et al., Incidence and Risk Factors of In-Stent Restenosis After Percutaneous Coronary Intervention in Patients from Southern China. Eur J Med Res, 2022. 27(1): p. 12.
15. Marx, S.O., H. Totary-Jain, and A.R. Marks, Vascular Smooth Muscle Cell Proliferation in Restenosis. Circ Cardiovasc Interv, 2011. 4(1): p. 104-11.
16. Marx, S.O., H. Totary-Jain, and A.R. Marks, Vascular Smooth Muscle Cell Proliferation in Restenosis. Circulation: Cardiovascular Interventions, 2011. 4(1): p. 104-111.
17. Sajadian, M., et al., Factors Affecting In-stent Restenosis in Patients Undergoing Percutaneous Coronary Angioplasty. Galen Med J, 2018. 7: p. e961.
18. Giustino, G., et al., Coronary In-Stent Restenosis: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 2022. 80(4): p. 348-372.
19. Braicu, C., et al., A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers, 2019. 11(10).
20. Muslin, A.J., MAPK Signalling in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Targets. Clin Sci (Lond), 2008. 115(7): p. 203-18.
21. Fields, J.K., S. Günther, and E.J. Sundberg, Structural Basis of IL-1 Family Cytokine Signaling. Front Immunol, 2019. 10: p. 1412.
22. Patel, H., et al., Toll-Like Receptors in Ischaemia and Its Potential Role in the Pathophysiology of Muscle Damage in Critical Limb Ischaemia. Cardiology Research and Practice, 2012. 2012: p. 121237.
23. Esposito, G., et al., Cardiac Overexpression of A G(Q) Inhibitor Blocks Induction of Extracellular Signal-Regulated Kinase and c-Jun NH(2)-Terminal Kinase Activity in In Vivo Pressure Overload. Circ, 2001. 103(10): p. 1453-8.
24. Purcell, N.H., et al., Genetic Inhibition of Cardiac ERK1/2 Promotes Stress-Induced Apoptosis and Heart Failure but Has No Effect on Hypertrophy In Vivo. Proc Natl Acad Sci U S A, 2007. 104(35): p. 14074-9.
25. Haq, S., et al., Differential Activation of Signal Transduction Pathways in Human Hearts With Hypertrophy Versus Advanced Heart Failure. Circ, 2001. 103(5): p. 670-7.
26. Zhan, Y., et al., Role of JNK, p38, and ERK in Platelet-Derived Growth Factor–Induced Vascular Proliferation, Migration, and Gene Expression. Arterioscler Thromb Vasc Biol 2003. 23(5): p. 795-801.
27. Buccheri, D., et al., Understanding and Managing In-Stent Restenosis: A Review Of Clinical Data, from Pathogenesis to Treatment. J Thorac Dis, 2016. 8(10): p. E1150-e1162.
28. Lee, S.Y., M.K. Hong, and Y. Jang, Formation and Transformation of Neointima after Drug-eluting Stent Implantation: Insights from Optical Coherence Tomographic Studies. Korean Circ J, 2017. 47(6): p. 823-832.
29. Zhang, S., et al., Grb2 is Required for The Development of Neointima in Response to Vascular Injury. Arterioscler Thromb Vasc Biol, 2003. 23(10): p. 1788-93.
30. Chen, Y., et al., Hydrogen-Rich Saline Attenuates Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia by Inhibiting Reactive Oxygen Species Production and Inactivating The Ras-ERK1/2-MEK1/2 and Akt Pathways. Int J Mol Med, 2013. 31(3): p. 597-606.
31. Izumi, Y., et al., Gene transfer of Dominant-Negative Mutants of Extracellular Signal-Regulated Kinase and C-Jun NH2-Terminal Kinase Prevents Neointimal Formation in Balloon-Injured Rat Artery. Circ Res, 2001. 88(11): p. 1120-6.
32. Gennaro, G., et al., Inhibition of Vascular Smooth Muscle Cell Proliferation and Neointimal Formation In Injured Arteries by A Novel, Oral Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Inhibitor. Circ, 2004. 110(21): p. 3367-71.
33. Zhu, P., et al., Matrine Inhibits Disturbed Flow-Enhanced Migration Via Downregulation of ERK1/2-Mlck Signaling Vascular Smooth Muscle Cells. Ann Vasc Surg, 2012. 26(2): p. 268-75.
34. Chen, H.F., H.C. Chuang, and T.H. Tan, Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. Int J Mol Sci, 2019. 20(11).
35. Kehat, I., et al., Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circ Res, 2011. 108(2): p. 176-183.
36. Kidger, A.M. and S.M. Keyse, The regulation of Oncogenic Ras/ERK Signalling by Dual-Specificity Mitogen Activated Protein Kinase Phosphatases (MKPs). Seminars in Cell & Developmental Biology, 2016. 50: p. 125-132.
37. Rose, B.A., T. Force, and Y. Wang, Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale. Physiol Rev, 2010. 90(4): p. 1507-1546.
38. Mutlak, M. and I. Kehat, Dual Specific Phosphatases (DUSPs) in Cardiac Hypertrophy and Failure. Cell Signal, 2021. 84: p. 110033.
39. Caunt, C.J., et al., Spatiotemporal Regulation of ERK2 by Dual Specificity Phosphatases. J Biol Chem, 2008. 283(39): p. 26612-23.
40. Ahmad, M.K., et al., Dual-Specificity Phosphatase 6 (Dusp6): A Review of Its Molecular Characteristics and Clinical Relevance in Cancer. Cancer Biol Med, 2018. 15(1): p. 14-28.
41. Farooq, A., et al., Solution Structure of ERK Binding Domain of MAPK Phosphatase MKP-3: Structural Insights Into MKP-3 Activation by ERK2. Mol Cell, 2001. 7(2): p. 387-99.
42. Xu, Z., et al., Inhibition of HDAC3 Prevents Diabetic Cardiomyopathy in Ove26 Mice Via Epigenetic Regulation of Dusp5-ERK1/2 Pathway. Clinical Science, 2017. 131(15): p. 1841-1857.
43. Maillet, M., et al., DUSP6 (MKP3) Null Mice Show Enhanced ERK1/2 Phosphorylation at Baseline and Increased Myocyte Proliferation in the Heart Affecting Disease Susceptibility. J Biol Chem, 2008. 283(45): p. 31246-55.
44. Missinato, M.A., et al., Dusp6 Attenuates Ras/MAPK Signaling to Limit Zebrafish Heart Regeneration. Development, 2018. 145(5).
45. Zhang, Z., et al., A DUSP6 Inhibitor Suppresses Inflammatory Cardiac Remodeling and Improves Heart Function after Myocardial Infarction. Dis Model Mech, 2023. 16(5).
46. Hsu, S.F., et al., Dual Specificity Phosphatase Dusp6 Promotes Endothelial Inflammation Through Inducible Expression of ICAM-1. Febs j, 2018. 285(9): p. 1593-1610.
47. Chang, C.-S., et al., Single-cell RNA Sequencing Uncovers the Individual Alteration of Intestinal Mucosal Immunocytes in DUSP6 Knockout Mice. iScience, 2022. 25(2): p. 103738.
48. Chang, C.S., et al., Identification of A Gut Microbiota Member that Ameliorates DSS-Induced Colitis in Intestinal Barrier Enhanced Dusp6-Deficient Mice. Cell Rep, 2021. 37(8): p. 110016.
49. Degl′Innocenti, D., et al., DUSP6/MKP3 is Overexpressed In Papillary And Poorly Differentiated Thyroid Carcinoma and Contributes to Neoplastic Properties Of Thyroid Cancer Cells. Endocr Relat Cancer, 2013. 20(1): p. 23-37.
50. Ekerot, M., et al., Negative-Feedback Regulation of FGF Signalling by DUSP6/MKP-3 is Driven by ERK1/2 and Mediated by Ets Factor Binding to a Conserved Site within the DUSP6/MKP-3 gene Promoter. Biochem J, 2008. 412(2): p. 287-98.
51. Okudela, K., et al., Down-Regulation of Dusp6 Expression in Lung Cancer: Its Mechanism and Potential Role in Carcinogenesis. Am J Pathol, 2009. 175(2): p. 867-81.
52. Zhou, X., et al., Dusp6 Deficiency Attenuates Neutrophil-Mediated Cardiac Damage in the Acute Inflammatory Phase of Myocardial Infarction. Nat Commun, 2022. 13(1): p. 6672.
53. Ruan, J.W., et al., Dual-Specificity Phosphatase 6 Deficiency Regulates Gut Microbiome And Transcriptome Response Against Diet-Induced Obesity in Mice. Nat Microbiol, 2016. 2: p. 16220.
54. Pfuhlmann, K., et al., Dual Specificity Phosphatase 6 Deficiency is Associated With Impaired Systemic Glucose Tolerance and Reversible Weight Retardation in Mice. PLoS One, 2017. 12(9): p. e0183488.
55. Feng, B., et al., Mitogen-Activated Protein Kinase Phosphatase 3 (MKP-3)-Deficient Mice are Resistant to Diet-Induced Obesity. Diabetes, 2014. 63(9): p. 2924-34.
56. Souza Pauli, L.S., et al., Exercise Training Decreases Mitogen-Activated Protein Kinase Phosphatase-3 Expression and Suppresses Hepatic Gluconeogenesis in Obese Mice. J Physiol, 2014. 592(6): p. 1325-40.
57. Federation, W.H. Deaths from Cardiovascular Disease Surged 60% Globally Over the Last 30 Years: Report. 2023, May 20; Available from: https://world-heart-federation.org/news/deaths-from-cardiovascular-disease-surged-60-globally-over-the-last-30-years-report/#:~:text=CVD%20was%20the%20leading%20cause,%2Dincome%20countries%20(LMICs).
58. Moussa, I.D., et al., Trends and Outcomes of Restenosis after Coronary Stent Implantation in the United States. Journal of the American College of Cardiology, 2020. 76(13): p. 1521-1531.
59. Tang, H.-Y., et al., Vascular Smooth Muscle Cells Phenotypic Switching in Cardiovascular Diseases. Cells, 2022. 11(24): p. 4060.
60. Yoshizumi, M., et al., Targeting the Mitogen-Activated Protein Kinase-Mediated Vascular Smooth Muscle Cell Remodeling by Angiotensin II. Ann Transl Med, 2020. 8(5): p. 157.
61. Eun, S.Y., et al., Il-1β Enhances Vascular Smooth Muscle Cell Proliferation and Migration Via P2y2 Receptor-Mediated Rage Expression and HMGB1 Release. Vascul Pharmacol, 2015. 72: p. 108-17.
62. Samson, S.C., A.M. Khan, and M.C. Mendoza, ERK Signaling for Cell Migration and Invasion. Front Mol Biosci, 2022. 9.
63. Dong, L.-H., et al., Blockade of the Ras–Extracellular Signal–Regulated Kinase 1/2 Pathway is Involved in Smooth Muscle 22α–Mediated Suppression of Vascular Smooth Muscle Cell Proliferation and Neointima Hyperplasia. Arterioscler Thromb Vasc Biol 2010. 30(4): p. 683-691.
64. Liu, S., et al., Structural Basis of Docking Interactions Between ERK2 and Map Kinase Phosphatase 3. Proc Natl Acad Sci U S A, 2006. 103(14): p. 5326-31.
65. Beaudry, K., et al., Dual-Specificity Phosphatase 6 Deletion Protects the Colonic Epithelium Against Inflammation and Promotes both Proliferation and Tumorigenesis. J Cell Physiol, 2019. 234(5): p. 6731-6745.
66. Bennett, A.M., DUSPs, Twists and Turns in The Journey to Vascular Inflammation. FEBS J, 2018. 285(9): p. 1589-1592.
67. Le, V., et al., Murine Model of Femoral Artery Wire Injury with Implantation of A Perivascular Drug Delivery Patch. J Vis Exp, 2015(96): p. e52403.
68. Gunther, S., et al., Functional angiotensin II receptors in cultured vascular smooth muscle cells. J Cell Biol, 1982. 92(2): p. 289-298.
69. Lin, D.W., et al., Transforming Growth Factor Beta Up-Regulates Cysteine-Rich Protein 2 in Vascular Smooth Muscle Cells Via Activating Transcription Factor 2. J Biol Chem, 2008. 283(22): p. 15003-14.
70. Reis, E.D., et al., Apoptosis, Proliferation, and p27 Expression During Vessel Wall Healing: Time Course Study in A Mouse Model of Transluminal Femoral Artery Injury. J Vasc Surg, 2000. 32(5): p. 1022-9.
71. Sprague, A.H. and R.A. Khalil, Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease. Biochem Pharmacol, 2009. 78(6): p. 539-52.
72. Ishida, N., et al., Phosphorylation at Serine 10, A Major Phosphorylation Site of P27(Kip1), Increases Its Protein Stability. J Biol Chem, 2000. 275(33): p. 25146-54.
73. Blindt, R., et al., Downregulation of N-cadherin in the Neointima Stimulates Migration of Smooth Muscle Cells by RhoA Deactivation. Cardiovasc. Res., 2004. 62(1): p. 212-222.
74. Ilic, D., et al., Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 1995. 377(6549): p. 539-44.
75. Sun, Z., et al., N-cadherin, a vascular smooth muscle cell-cell adhesion molecule: function and signaling for vasomotor control. Microcirculation, 2014. 21(3): p. 208-18.
76. Jones, M., et al., N-Cadherin Upregulation and Function in Response of Smooth Muscle Cells to Arterial Injury. Arterioscler Thromb Vasc Biol 2002. 22(12): p. 1972-1977.
77. Lyon, C., et al., Regulation of VSMC behavior by the cadherin-catenin complex. Front Biosci (Landmark Ed), 2011. 16(2): p. 644-57.
78. Grootaert, M.O.J. and M.R. Bennett, Vascular Smooth Muscle Cells in Atherosclerosis: Time for A Re-Assessment. Cardiovasc Res, 2021. 117(11): p. 2326-2339.
79. Jimenez-Quevedo, P., et al., Vascular Injury After Stenting - Insights of Systemic Mechanisms of Vascular Repair. Circ J, 2022. 86(6): p. 966-974.
80. Spadaccio, C., et al., Preventing Treatment Failures in Coronary Artery Disease: What Can We Learn From The Biology of In-Stent Restenosis, Vein Graft Failure, and Internal Thoracic Arteries? Cardiovasc Res, 2019. 116(3): p. 505-519.
81. Kingsley, K., et al., ERK1/2 Mediates PDGF-BB Stimulated Vascular Smooth Muscle Cell Proliferation and Migration on Laminin-5. Biochem Biophys Res Commun, 2002. 293(3): p. 1000-1006.
82. Karlsson, M., et al., Both Nuclear-Cytoplasmic Shuttling of The Dual Specificity Phosphatase Mkp-3 and Its Ability to Anchor Map Kinase in The Cytoplasm are Mediated by A Conserved Nuclear Export Signal. J Biol Chem, 2004. 279(40): p. 41882-91.
83. Song, H., et al., Silencing of DUSP6 Gene by RNAi-Mediation Inhibits Proliferation And Growth in MDA-MB-231 Breast Cancer Cells: an In Vitro Study. Int J Clin Exp Med, 2015. 8(7): p. 10481-90.
84. Chan, D.W., et al., Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis, 2008. 29(9): p. 1742-50.
85. Lake, D., S.A. Corrêa, and J. Müller, Negative Feedback Regulation of the ERK1/2 MAPK Pathway. Cell Mol Life Sci, 2016. 73(23): p. 4397-4413.
86. Goukassian, D., et al., Overexpression of p27(Kip1) by Doxycycline-Regulated Adenoviral Vectors Inhibits Endothelial Cell Proliferation and Migration and Impairs Angiogenesis. Faseb j, 2001. 15(11): p. 1877-85.
87. Levenberg, S., et al., p27 is Involved in N-Cadherin-Mediated Contact Inhibition of Cell Growth and S-Phase Entry. Oncogene, 1999. 18(4): p. 869-76.
88. Messina, G., et al., p27Kip1 Acts Downstream of N-Cadherin-Mediated Cell Adhesion to Promote Myogenesis Beyond Cell Cycle Regulation. Mol Biol Cell, 2005. 16(3): p. 1469-80.
89. Fasciano, S., et al., Regulation of Vascular Smooth Muscle Proliferation by Heparin: Inhibition of Cyclin-Dependent Kinase 2 Activity by p27(kip1). J Biol Chem, 2005. 280(16): p. 15682-9.
90. Sabatini, P.J., et al., Homotypic and Endothelial Cell Adhesions Via N-cadherin Determine Polarity and Regulate Migration of Vascular Smooth Muscle Cells. Circ Res, 2008. 103(4): p. 405-12.
91. Piya, S., et al., DUSP6 is a Novel Transcriptional Target of P53 And Regulates P53-Mediated Apoptosis by Modulating Expression Levels of Bcl-2 Family Proteins. FEBS Lett, 2012. 586(23): p. 4233-40.
92. Jeong, K., et al., FAK in the Nucleus Prevents VSMC Proliferation by Promoting p27 and p21 Expression via Skp2 Degradation. Cardiovasc Res, 2022. 118(4): p. 1150-1163.
93. Braun-Dullaeus, R.C., et al., A Novel Role for the Cyclin-Dependent Kinase Inhibitor p27(Kip1) in Angiotensin II-Stimulated Vascular Smooth Muscle Cell Hypertrophy. J Clin Invest, 1999. 104(6): p. 815-23.
94. Chen, D., et al., Downregulation of Cyclin-Dependent Kinase 2 Activity and Cyclin A Promoter Activity in Vascular Smooth Muscle Cells by p27(KIP1), An Inhibitor Of Neointima Formation in The Rat Carotid Artery. J Clin Invest, 1997. 99(10): p. 2334-41.
95. Reynisdóttir, I., et al., Kip/Cip and Ink4 Cdk Inhibitors Cooperate to Induce Cell Cycle Arrest in Response to TGF-beta. Genes Dev, 1995. 9(15): p. 1831-45.
96. Tsutsumimoto, T., et al., TNF-alpha and IL-1beta Suppress N-cadherin Expression in Mc3t3-E1 Cells. J Bone Miner Res, 1999. 14(10): p. 1751-60.
97. Uglow, E.B., et al., Dismantling of Cadherin-Mediated Cell-Cell Contacts Modulates Smooth Muscle Cell Proliferation. Circ Res, 2003. 92(12): p. 1314-21.
98. Gil, D., et al., Integrin Linked Kinase Regulates Endosomal Recycling of N-Cadherin In Melanoma Cells. Cell Signal, 2020. 72: p. 109642.
99. Cadwell, C.M., W. Su, and A.P. Kowalczyk, Cadherin Tales: Regulation of Cadherin Function by Endocytic Membrane Trafficking. Traffic, 2016. 17(12): p. 1262-1271.
100. Pokutta, S. and W.I. Weis, Structure and Mechanism of Cadherins and Catenins in Cell-Cell Contacts. Annu Rev Cell Dev Biol, 2007. 23: p. 237-61.
101. Tsaousi, A., et al., Wnt4/β-catenin Signaling Induces VSMC Proliferation and Is Associated with Intimal Thickening. Circ Res, 2011. 108(4): p. 427-36.
102. Hulin-Curtis, S., et al., Targeting Wnt/β-Catenin Activated Cells with Dominant-Negative N-cadherin to Reduce Neointima Formation. Mol Ther Methods Clin Dev, 2017. 5: p. 191-199.
103. Lyon, C.A., et al., Inhibition of N-cadherin Retards Smooth Muscle Cell Migration and Intimal Thickening Via Induction of Apoptosis. J Vasc Surg, 2010. 52(5): p. 1301-9.
指導教授 林秀芳 陳盛良(Shaw-Fang Yet Shen-Liang Chen) 審核日期 2024-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明