參考文獻 |
[1] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[2] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling,"
[3] W. Du, S. Zhang, Q. Zhang, and X. Liu, "Recent progress of strong exciton–photon coupling in lead halide perovskites," Advanced Materials, vol. 31, no. 45, p. 1804894, 2019.
[4] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[5] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998
[6] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, p. 033305, 2010
[7] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, no. 23, p. 3314, 1992.
[8] S. Kéna-Cohen and S. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, no. 6, pp. 371-375, 2010.
[9] J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, "Strong coupling in a microcavity LED," Physical review letters, vol. 95, no. 3, p. 036401, 2005.
[10] A. Genco, A. Ridolfo, S. Savasta, S. Patanè, G. Gigli, and M. Mazzeo, "Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime,"
[11] D. G. Lidzey and D. M. Coles, "Strong Coupling in Organic and Hybrid-Semiconductor Microcavity Structures," in Organic and Hybrid Photonic Crystals, ed: Springer, 2015, pp. 243-273.
[12] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, p. 121303, 2013.
[13] T. Virgili, D. Coles, A.M. Adawi et al.,"Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity"Phys. Rev. B 83, 245309 (2011).
[14] A.I. Tartakovskii, M. Emam-Ismail, R.M. Stevenson et al., "Relaxation bottleneck and its suppression in semiconductor microcavities"Phys. Rev. B 62, R2283 (2000).
[15] Grant H. Lodden and Russell J. Holmes,"Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor"Phys. Rev. B 82, 125317 ,2010.
[16] Richard T. Grant,"Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye",adv Optical Mater.4,1615-1623(2016)
[17] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, " Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, p. 3316, 1999.
[18] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[19] T. Chiba, Y.-J. Pu, and J. Kido, "Solution-processable electron injection materials for organic light-emitting devices," Journal of Materials Chemistry C, vol. 3, no. 44, pp. 11567-11576, 2015
[20] M. Sessolo and H. J. Bolink, " Hybrid organic–inorganic light‐emitting diodes," Advanced Materials, vol. 23, no. 16, pp. 1829-1845, 2011.
[21] N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. A. Haque, "A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer," Advanced Materials, vol. 21, no. 34, pp. 3475-3478, 2009.
[22] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition metal oxides for organic electronics: energetics, device physics and applications," Advanced materials, vol. 24, no. 40, pp. 5408-5427, 2012.
[23] S. Burns, J. MacLeod, T. Trang Do, P. Sonar, and S. D. Yambem, "Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs," Scientific Reports, vol. 7, no. 1, p. 40805, 2017/01/20 2017
[24] Florian Le Roux, Robert A. Taylor, and Donal D. C. Bradley"Enhanced and Polarization-Dependent Coupling for Photoaligned Liquid Crystalline Conjugated Polymer Microcavities"ACS Photonics 3, 746–758 2020
[25] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers," Applied Physics Letters, vol. 91, no. 25, p. 253504, 2007.
[26] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
[27] H. Lee et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, no. 4, p. 279, 2008.
[28] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, no. 25, p. 967, 1965.
[29] P. Vacca et al., "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance," The Journal of Physical Chemistry C, vol. 111, no. 46, pp. 17404-17408, 2007.
[30] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, no. 781, pp. 173-181, 1928.
[31] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, no. 1-3, pp. 23-29, 1994.
[32] 林煒紘, "超強耦合高分子發光二極體之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/49acd6
[33] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, no. 12, p. 123104, 2008
[34] 李正中, "薄膜光學與鍍膜技術," ed: 第九版, 藝軒圖書出版社, 2020.
[35] Geum-Yoon Oh,"Analysis of surface plasmon resonance with Goos-hanchen shift using FDTD method"IEEE Xplore, 2008
[36] 黃柏翔, "聚對苯乙烯衍生物高效率強耦合有機發光二極體之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available: https://hdl.handle.net/11296/y3nkta
[37] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[38] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[39] M. Fox, Quantum optics: an introduction. OUP Oxford, 2006
[40] J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulović, "Solid state cavity QED: Strong coupling in organic thin films," Organic Electronics, vol. 8, no. 2-3, pp. 94-113, 2007.
[41] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[42] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," Semiconductor Quantum Science and Technology, vol. 105, pp. 89-151, 2020.
[43] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[44] 邱國賢, "超強耦合之有機高分子電激發偏極子元件," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022. [Online]. Available: https://hdl.handle.net/11296/6mwm2r
[45] 陳頤, "即時性多角度光譜儀系統之校正與應用," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/2a84c5
[46] S. Gambino, A. K. Bansal, and I. D. W. Samuel, "Photophysical and charge-transporting properties of the copolymer SuperYellow," Organic Electronics, vol. 14, no. 8, pp. 1980-1987, 2013.
[47] Y. Zhou et al., "A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics," Science, vol. 336, no. 6079, pp. 327-332, 2012.
[48] T. Lanz, E. M. Lindh, and L. Edman, "On the Asymmetric Evolution of the Optical Properties of a Conjugated Polymer during Electrochemical p-and n-type Doping," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4706-4715, 2017.
[49] S.R.Tseng, Y.S.Chen and H.F.Meng"Electron transport and electroluminescent efficiency of conjugated polymers" Synthetic Metals 159 (2009) 137–141
[50] B. Gündüz, "Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents," Polymer Bulletin, vol. 72, no. 12, pp. 3241-3267, 2015
[51] R. Kaçar, S. P. Mucur, F. Yıldız, S. Dabak, and E. Tekin, "Highly efficient inverted organic light emitting diodes by inserting a zinc oxide/polyethyleneimine (ZnO: PEI) nano-composite interfacial layer," Nanotechnology, vol. 28, no. 24, p. 245204, 2017.
[52] R. J. Holmes and S. R. Forrest"Strong Exciton-Photon Coupling and Exciton Hybridization in a Thermally Evaporated Polycrystalline Film of an Organic Small Molecule" Physical Review Letters ,vol 93, no 18 ,2004.
|