博碩士論文 109226082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.225.195.163
姓名 李天翔(Tien-Hsiang Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 錐形波導設計對氮化矽微環形共振腔耦合效應研究
(Coupling effect of tapered waveguides design on silicon nitride microring resonator)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究★ 微環形共振腔非線性效應與壓縮光之研究
★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 耦合共振腔光波導頻寬優化研究★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究
★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究
★ 氮化矽微環型干涉儀製程與穿透頻譜調製★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究
★ 微環形共振腔耦合馬赫曾德爾干涉儀之研究★ 雙重曝光氮化矽環形共振腔製作與熱效應調製
★ 非對稱環形共振腔耦合與品質因子控制★ 奈米壓印製作環形共振腔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽光子技術由於其高頻寬、低損耗、可結合互補式金屬氧化物半導體製程,使其有廣泛的應用,包括濾波器、檢測器、調變器、非線性光學等,在這些應用上,直波導與共振腔的耦合扮演了重要的角色,在臨界耦合模式可以為線性元件提供好的消光比以及靈敏度,在過耦合模式可為非線性元件提供更好的轉換效率。過往使耦合增強的方法有縮短間隙距離,或是增加耦合區域的範圍,但這些方法需要更好的製程控制以及更多的波導設計,因此在波導設計的靈活性受到限制。本論文透過在直波導耦合區域的錐形波導設計,使氮化矽微環形共振腔的耦合增強,並且探討不同幾何結構的錐形波導對於耦合效應的影響。
首先以時域有限差分法對於不同結構的錐形波導進行模擬,觀察共振腔內的能量,並計算出不同錐形波導的耦合強度變化。我們利用單側漸進式錐形波導的設計,在與無錐形波導設計相比,其耦合強度最高可提升 347 倍。除此之外,利用錐形波導,可在共振腔內激發不同腔體模態,藉以達到模態轉換之能力。
再來介紹元件的製程,本論文以低壓化學氣相沉積所沉積之氮化矽作為波導,並以 i-line 步進機和電子束直寫系統進行微影製程,在優化其製程後,其品質因子皆可達到10^5。並且因為錐形波導的設計,使得間隙為 0.4 μm的微環形共振腔,符合在步進機上可達到之最小解析度,因此可以在i-line步進機上實現大量生產,而不必依靠電子束直寫系統繼續縮短間隙寬度。在量測方面,由元件在 1550 nm 光通
訊穿透光譜進行分析,可得到在錐形波導與無錐形波導的設計相比,其耦合強度在i-line步進機與電子束直寫系統上,分別可增強 7 倍與 15 倍。
本論文提供一個靈活的設計方式,利用單側漸進式錐形波導可有效提升直波導至共振腔的耦合,在不用縮減間隙寬度的情況,可望達到臨界甚至到過耦合模式。並且透過 i-line 步進機,能實現大量生產的可能性。
摘要(英) Silicon photonics technology has a wide range of applications, including filters, detectors, modulators, nonlinear optics, etc., due to its high bandwidth, low loss, and compatibility with complementary metal oxide semiconductor processes. In these applications, the coupling between the bus waveguide and the resonator plays an important role, which can provide a strong extinction ratio and high sensitivity for linear components in the critical coupling regime, and also provide better conversion efficiency for nonlinear components in the over coupling regime. In the past, there are several methods to optimize the coupling, including gap distance reduction or elongation of the coupling region, but these methods require better process control and complicated waveguide designs. Therefore, the flexibility in waveguide design is limited. In this thesis, the coupling of the silicon nitride micro-ring resonator is investigated with the design of the tapered waveguide in the coupling region, and the effect of the tapered waveguide with different geometric dimensions is discussed. Coupling enhancement can be identified with coupling of a straight bus.
Firstly, the tapered waveguides with different dimensions are simulated by the finitedifference-time-domain (FDTD) method, the energy in the resonator is studied, and the
changes in coupling strength of different tapered waveguides are investigated. We utilize the design of the single-side tapered waveguide to achieve coupling up to 347 times higher strength in comparing to that without a tapered design.
Then, the author introduces the fabrication process of the device. In this paper, a silicon nitride layer deposited by low pressure chemical vapor deposition is used as the
waveguide core, and an i-line stepper lithography and an electron beam writing system are both utilized for the lithography process. After optimizing the process, the quality factor of both systems can be achieved with the order of 10^5. Because of the proposed design of the tapered waveguide, the micro-ring resonator with a gap of 0.4 μm complies the available (minimum) resolution of the stepper lithography, mass production with strong coupling can be achieved by the i-line stepper without relying on the costly
electronic beam writing system. In terms of measurements, the optical transmission spectra at 1550 nm are analyzed. The coupling strength of the fabricated resonators with
i-line stepper and the electron beam writing system can be compared with or without the design of the tapered waveguide, showing an enhancement by 7 times and 15 times,
respectively.
The work in this thesis provides a flexible design method, which can effectively improve the coupling between the bus waveguide and the resonator using a single-side tapered waveguide. In addition, it provides critical coupling without the need of a narrow gap width (< 400 nm) at a moderate quality factor. This design paves the way for the
mass-productive and cost-effective process of microresonator fabrication through the iline stepper lithography.
關鍵字(中) ★ 錐形波導
★ 氮化矽波導
★ 微環形共振腔
★ 耦合
關鍵字(英) ★ tapered waveguides
★ silicon nitride waveguides
★ microring resonator
★ coupling
論文目次 誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 Xii
第一章 緒論 1
1.1 前言 1
1.2 氮化矽波導 2
1.3 研究動機 3
1.4 論文架構 7
第二章 錐形氮化矽波導微環形共振腔耦合模擬分析
2.1 模擬原理和模型 9
2.2 模擬結果與分析 15
2.3 結論 32
第三章 元件製作 34
3.1 製程流程 34
3.2 圖形設計 41
3.3 結論 44
第四章 元件量測 45
4.1 量測原理 45
4.2 量測系統架構與量測步驟 49
4.3 量測結果與分析 51
4.4 實驗與模擬結果比較 63
4.5 結論 64
第五章 結論與展望 65
參考資料 66
參考文獻 [1] GAETA, Alexander L.; LIPSON, Michal; KIPPENBERG, Tobias J. Photonic-chipbased frequency combs. nature photonics, 2019, 13.3: 158-169.
[2] FENG, Shaoqi, et al. Silicon photonics: from a microresonator perspective. Laser &
photonics reviews, 2012, 6.2: 145-177.
[3] LITTLE, Brent E., et al. Microring resonator channel dropping filters. Journal of lightwave technology, 1997, 15.6: 998-1005.
[4] REED, Graham T., et al. Silicon optical modulators. Nature photonics, 2010, 4.8: 518-526.
[5] LEUTHOLD, Juerg; KOOS, Christian; FREUDE, Wolfgang. Nonlinear silicon photonics. Nature photonics, 2010, 4.8: 535-544.
[6] XUAN, Yi, et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3.11: 1171-1180.
[7] CHEN, Hong, et al. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications. Optics express, 2017, 25.25: 31758-31773.
[8] INOUE, Hiroaki, et al. Low loss GaAs optical waveguides. IEEE Transactions on Electron Devices, 1985, 32.12: 2662-2668.
[9] JALALI, Bahram; FATHPOUR, Sasan. Silicon photonics. Journal of lightwave technology, 2006, 24.12: 4600-4615.
[10] LEUTHOLD, Juerg; KOOS, Christian; FREUDE, Wolfgang. Nonlinear silicon photonics. Nature photonics, 2010, 4.8: 535-544.
[11] CHU, Paul K., et al. Instrumental and process considerations for the fabrication of silicon-on-insulators (SOI) structures by plasma immersion ion implantation. IEEE
transactions on plasma science, 1998, 26.1: 79-84.
[12] FENG, Shaoqi, et al. Silicon photonics: from a microresonator perspective. Laser & photonics reviews, 2012, 6.2: 145-177.
[13] XUE, Xiaoxiao, et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser & Photonics Reviews, 2017, 11.1: 1600276.
[14] ZHOU, Linjie, et al. Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation. Applied Physics A, 2009, 95.4: 1101-1109.
[15] DAI, Daoxin, et al. Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides. IEEE photonics technology letters, 2009, 21.4: 254-256.
[16] HOSSEINI, Ehsan Shah, et al. Systematic design and fabrication of high-Q singlemode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths.
Optics express, 2010, 18.3: 2127-2136.
[17] SPENCER, Daryl T., et al. Integrated waveguide coupled Si 3 N 4 resonators in the ultrahigh-Q regime. Optica, 2014, 1.3: 153-157.
[18] TABATABA-VAKILI, Farsane, et al. Demonstration of critical coupling in an active III-nitride microdisk photonic circuit on silicon. Scientific reports, 2019, 9.1: 1-9.
[19] SUN, Haishan, et al. Microring resonators fabricated by electron beam bleaching of chromophore doped polymers. Applied Physics Letters, 2008, 92.19: 171.
[20] SUN, Rong, et al. Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process. Optics letters, 2009, 34.15: 2378-2380.
[21] LIU, Jia, et al. Photolithography allows high-Q AlN microresonators for near octavespanning frequency comb and harmonic generation. Optics Express, 2020, 28.13: 19270-
19280.
[22] WU, Kaiyi; POON, Andrew W. Stress-released Si 3 N 4 fabrication process for dispersion-engineered integrated silicon photonics. Optics Express, 2020, 28.12: 17708-
17722.
[23] WANG, Pei-Hsun; ZHONG, Yi-Xian; HUANG, Shu-An. Numerical analysis of nanotapered waveguides for cavity coupling optimization. Journal of Nanophotonics, 2021, 15.4: 046006.
[24] https://en.wikipedia.org/wiki/Finite-difference_time-domain_method
[25] https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passivedevice-fullwave.html
[26] MITOMI, Osamu; KASAYA, Kazuo; MIYAZAWA, Hiroshi. Design of a singlemode tapered waveguide for low-loss chip-to-fiber coupling. IEEE Journal of Quantum Electronics, 1994, 30.8: 1787-1793.
[27] SON, Gyeongho, et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits. Nanophotonics, 2018, 7.12: 1845-1864.
[28] MAO, Deng, et al. Adiabatic coupler with design-intended splitting ratio. Journal of Lightwave Technology, 2019, 37.24: 6147-6155.
[29] KIM, Sangsik, et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nature communications, 2017, 8.1: 1-8.
[30] ABDELAZIZ, Ilyes, et al. Design of a large effective mode area photonic crystal fiber with modified rings. Optics communications, 2010, 283.24: 5218-5223.
[31] DAI, Daoxin, et al. Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides. IEEE photonics technology letters, 2009, 21.4: 254-256.
[32] XIAO, Shijun, et al. Modeling and measurement of losses in silicon-on-insulator resonators and bends. Optics Express, 2007, 15.17: 10553-10561.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2022-12-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明