參考文獻 |
[1] H. D. Jabbar, M. A. Fakhri, and M. J. AbdulRazzaq, "Gallium nitride–based photodiode: a review," Materials Today: Proceedings, vol. 42, pp. 2829-2834, 2021.
[2] J. Wu, "When group-III nitrides go infrared: New properties and perspectives," Journal of applied physics, vol. 106, no. 1, p. 5, 2009, doi: https://doi.org/10.1063/1.3155798.
[3] J. Verma, A. Verma, V. Protasenko et al., "Nitride LEDs based on quantum wells and quantum dots," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2014, ch. 11, pp. 368-408.
[4] J. D. Simon, "Polarization-engineered III-V nitride heterostructure devices by molecular beam epitaxy," University of Notre Dame, 2009.
[5] Y.-R. Wu, C.-Y. Huang, Y. Zhao et al., "Nonpolar and semipolar LEDs," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2018, ch. 8, pp. 273-295.
[6] J.-H. Ryou and W. Lee, "GaN on sapphire substrates for visible light-emitting diodes," in Nitride Semiconductor Light-Emitting Diodes (LEDs): Elsevier, 2018, ch. 3, pp. 43-78.
[7] Y. Zhao, H. Fu, G. T. Wang et al., "Toward ultimate efficiency: Progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes," Advances in Optics and Photonics, vol. 10, no. 1, pp. 246-308, 2018, doi: https://doi.org/10.1364/AOP.10.000246.
[8] H. Fu and Y. Zhao, "Efficiency droop in GaInN/GaN LEDs," in Nitride semiconductor light-emitting diodes (LEDs), J.-J. Huang, H.-C. Kuo, and S.-C. Shen Eds.: Elsevier, 2018, ch. 9, pp. 299-325.
[9] S. Jin, J. Li, J. Li et al., "GaN microdisk light emitting diodes," Applied Physics Letters, vol. 76, no. 5, pp. 631-633, 2000.
[10] H. Jiang, S. Jin, J. Li et al., "III-nitride blue microdisplays," Applied Physics Letters, vol. 78, no. 9, pp. 1303-1305, 2001.
[11] S. Lu, J. Li, K. Huang et al., "Designs of InGaN micro-LED structure for improving quantum efficiency at low current density," Nanoscale Research Letters, vol. 16, no. 1, p. 99, 2021, doi: https://doi.org/10.1186/s11671-021-03557-4.
[12] T. Wu, C.-W. Sher, Y. Lin et al., "Mini-LED and micro-LED: promising candidates for the next generation display technology," Applied Sciences, vol. 8, no. 9, p. 1557, 2018.
[13] J. Piprek, "How to decide between competing efficiency droop models for GaN-based light-emitting diodes," Applied Physics Letters, vol. 107, no. 3, p. 031101, 2015.
[14] X. Jia, Y. Zhou, B. Liu et al., "A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications," Materials Research Express, vol. 6, no. 10, p. 105915, 2019, doi: https://doi.org/10.1088/2053-1591/ab3f7b.
[15] D. L. Becerra, Y. Zhao, S. H. Oh et al., "High-power low-droop violet semipolar (30-3-1) InGaN/GaN light-emitting diodes with thick active layer design," Applied Physics Letters, vol. 105, no. 17, p. 171106, 2014, doi: https://doi.org/10.1063/1.4900793.
[16] webpage from: COMSOL https://doc.comsol.com/6.1/docserver/#!REF:%252Fcom.comsol.help.semicond%252Ftoc.xml:RES:res_toc_-595578872.html
[17] J. Piprek, "Efficiency models for GaN-based light-emitting diodes: Status and challenges," Materials, vol. 13, no. 22, p. 5174, 2020.
[18] J. Piprek, Handbook of Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, and Amplifiers, Vol. 1. CRC Press, 2017.
[19] J. Piprek, Nitride semiconductor devices: principles and simulation. John Wiley & Sons, 2007.
[20] A. Romanov, T. Baker, S. Nakamura et al., "Strain-induced polarization in wurtzite III-nitride semipolar layers," Journal of Applied Physics, vol. 100, no. 2, p. 023522, 2006, doi: https://doi.org/10.1063/1.2218385.
[21] S. Schulz and O. Marquardt, "Electronic Structure of Polar and Semipolar (11 2¯ 2)-Oriented Nitride Dot-in-a-Well Systems," Physical Review Applied, vol. 3, no. 6, p. 064020, 2015.
[22] K.-Y. Cheng, III–V Compound Semiconductors and Devices. Springer, 2020.
[23] S. Roy, S. T. Ahsan, A. H. Howlader et al., "Comparative investigation into polarization field-dependent internal quantum efficiency of semipolar InGaN green light-emitting diodes: A strategy to mitigate green gap phenomenon," Materials Today Communications, vol. 31, p. 103705, 2022, doi: https://doi.org/10.1016/j.mtcomm.2022.103705.
[24] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva et al., "Carrier mobility model for GaN," Solid-State Electronics, vol. 47, no. 1, pp. 111-115, 2003, doi: https://doi.org/10.1016/S0038-1101(02)00256-3.
[25] I. Vurgaftman and J. n. Meyer, "Band parameters for nitrogen-containing semiconductors," Journal of Applied Physics, vol. 94, no. 6, pp. 3675-3696, 2003.
[26] M. A. Caro, S. Schulz, and E. P. O’Reilly, "Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides," Physical Review B, vol. 88, no. 21, p. 214103, 2013, doi: http://dx.doi.org/10.1103/PhysRevB.88.214103.
[27] A. N. Donald, Semi-Conductor Physics & Devices. Tata McGraw Hill Education Private Limited, 2006.
[28] P. Rinke, M. Winkelnkemper, A. Qteish et al., "Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN," Physical Review B, vol. 77, no. 7, p. 075202, 2008, doi: http://dx.doi.org/10.1103/PhysRevB.77.075202.
[29] J. Piprek, Semiconductor optoelectronic devices: introduction to physics and simulation. Elsevier, 2013.
[30] 盧廷昌, 半導體雷射導論. 五南, 2008.
[31] V. Brudnyi, "BN, AlN, GaN, InN: charge neutrality level, surface, interfaces, doping," Russian Physics Journal, vol. 59, pp. 2186-2190, 2017.
[32] J. Cho, E. F. Schubert, and J. K. Kim, "Efficiency droop in light‐emitting diodes: Challenges and countermeasures," Laser & Photonics Reviews, vol. 7, no. 3, pp. 408-421, 2013, doi: https://doi.org/10.1002/lpor.201200025.
[33] F. Schwierz, "An electron mobility model for wurtzite GaN," Solid-state electronics, vol. 49, no. 6, pp. 889-895, 2005, doi: https://doi.org/10.1016/j.sse.2005.03.006.
[34] R. Saroosh, T. Tauqeer, S. Afzal et al., "Performance enhancement of AlGaN/InGaN MQW LED with GaN/InGaN superlattice structure," IET Optoelectronics, vol. 11, no. 4, pp. 156-162, 2017, doi: https://doi.org/10.1049/iet-opt.2016.0141.
[35] S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. John Wiley & Sons, 2009.
[36] S. Khatsevich and D. Rich, "The effects of crystallographic orientation and strain on the properties of excitonic emission from wurtzite InGaN/GaN quantum wells," Journal of Physics: Condensed Matter, vol. 20, no. 21, p. 215223, 2008, doi: https://doi.org/10.1088/0953-8984/20/21/215223.
[37] J. Piprek, R. Farrell, S. DenBaars et al., "Effects of built-in polarization on InGaN-GaN vertical-cavity surface-emitting lasers," presented at the IEEE photonics technology letters, 2005.
[38] M. Caro, S. Schulz, and E. O’Reilly, "Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides," Physical Review B, vol. 86, no. 1, p. 014117, 2012, doi: https://doi.org/10.1103/PhysRevB.86.014117.
[39] A. Strittmatter, J. E. Northrup, N. M. Johnson et al., "Semi‐polar nitride surfaces and heterostructures," physica status solidi (b), vol. 248, no. 3, pp. 561-573, 2011, doi: https://doi.org/10.1002/pssb.201046422.
[40] C.-K. Li and Y.-R. Wu, "Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs," presented at the IEEE transactions on electron devices, 2011.
[41] Y. Kawaguchi, C.-Y. Huang, Y.-R. Wu et al., "Influence of polarity on carrier transport in semipolar (20-2-1) and (20-21) multiple-quantum-well light-emitting diodes," Applied Physics Letters, vol. 100, no. 23, p. 231110, 2012, doi: https://doi.org/10.1063/1.4726106.
[42] F. Akyol, D. Nath, S. Krishnamoorthy et al., "Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes," Applied Physics Letters, vol. 100, no. 11, p. 111118, 2012, doi: https://doi.org/10.1063/1.3694967.
[43] U. T. Schwarz, H. Braun, K. Kojima et al., "Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells," Applied Physics Letters, vol. 91, no. 12, p. 123503, 2007, doi: https://doi.org/10.1063/1.2786602.
[44] H. Li, H. Zhang, J. Song et al., "Toward heteroepitaxially grown semipolar GaN laser diodes under electrically injected continuous-wave mode: From materials to lasers," Applied Physics Reviews, vol. 7, no. 4, 2020, doi: https://doi.org/10.1063/5.0024236.
[45] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, "Investigation of efficiency droop behaviors of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses," presented at the IEEE Journal of selected topics in quantum electronics, 2009.
[46] M. Tian, H. Yu, M. H. Memon et al., "Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall," Optics Letters, vol. 46, no. 19, pp. 4809-4812, 2021.
[47] J.-I. Shim and D.-S. Shin, "Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization," Nanophotonics, vol. 7, no. 10, pp. 1601-1615, 2018. |