博碩士論文 109226066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.146.105.212
姓名 江仲鈞(Zhong-Jun Jiang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用低壓化學氣相沉積於矽基(111)上生長sp2鍵結氮化硼薄膜特性之研究
(Characteristics of sp2-bonded Boron Nitride Thin Films Growm on Silicon (111) by Low Pressure Chemical Vapor Deposition)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-3-30以後開放)
摘要(中) 隨著科技的發展促使消費性電子產品微縮,且產品需要高功能低損耗,為了達
成上述需求,需要突破在半導體上的物理極限,因此二維材料的發展備受關注,而
sp2 鍵結六方氮化硼是其中擁有寬能隙的二維材料,且有出色的化學穩定性,而良好
的介電材料能有效降低電荷的散射,因此本研究使用低壓化學氣相沉積法於矽基板
上生長 sp2 鍵結六方氮化硼薄膜。
本研究主要是改變前驅物的引入方式,並比較兩者製程所生長的 sp
2 鍵結氮化
硼薄膜,在前驅物為非引入式製程的拉曼光譜所量測到的半高寬峰值在高溫爐管後
端的結晶品質較佳,半高寬峰值最佳約為 31 cm-1,XPS 所量測 B:N 為 1.55:1,而透
過 HR-STEM 證實為與六方氮化硼同類 sp
2 鍵結的亂層氮化硼。引入式製程所生長
的 sp2 鍵結氮化硼薄膜,拉曼光譜所量測出來的整體半高寬峰值,隨距離越遠有越
好的趨勢,半高峰值最佳也約為 31 cm-1,而透過 HR-STEM 證實在矽的表層有接近
平面的 sp2 鍵結氮化硼薄膜,XPS 所量測出的 B:N 比從 1.55:1 下降至 1.21:1,兩個
製程薄膜從 FTIR 所量測的 B-N 鍵結以及 B-N-B 鍵結強度有越來越好的趨勢,從橢
偏儀所量測出的結果,整體薄膜的折射率為引入式製程較佳,也從光譜量測以及
Tauc plot 方法中所計算出來的能隙都由引入式製程參數較佳,代表薄膜品質有變好,
而最佳能隙值為 5.76 eV。
最後本研究結論為引入式製程可以避免前驅物受到熱輻射而提早反應,且可以
控制前驅物的加熱溫度,並有效控制反應物的產生,且能藉由氣體流量大小控制薄
膜的生長,而使整體薄膜品質變好。
摘要(英) As the development of technology, consumer electronics continue to shrink with high
performance and low power consumption. In order to achieve the above requirements, it is
necessary to exceed the physical limits of semiconductors. Therefore the development of
2D materials has attracted great attention, especially the sp2
-bonded hexagonal boron
nitride (h-BN) with a wide energy gap and excellent chemical stability. It is an excellent
dielectric material and can effectively reduce the scattering of charges. In this study, lowpressure chemical vapor deposition has been applied to fabricate sp2
-bonded h-BN thin
films on Si substrates.
The sp2
-bonded BN thin films grown by the two different precursor injection methods.
The full-width half-width maximun (FWHM) of the peaks measured by Raman
spectroscopy of the BN fabricated by non-injection method showed good crystalline
quality at the rear end of the high-temprerature furnace with the best peak width of about
31 cm-1
. And the B:N is 1.55:1 measured by XPS. The sp2
-bonded h-BN random layers
were confirmed by HR-STEM. The FWHM of the peaks measured by Raman spectroscopy
of the sp2
-bonded BN thin films grown by the injection mathod showed better crystalline
quality, with the best peak width of about 31 cm-1
. It was confirmed by HR-STEM that it
is a nearly planar sp2
-bonded h-BN film on the surface of Si. The B:N measured by XPS is
1.21:1. The B-N bonding and B-N-B bonding strengths as the distance in the furnace
measured by FTIR of the h-BN films grown by the both process films showed an increasing
trend. The refractive index measured by the ellipsometer and the energy gap calculated
using Tauc-plot method show the injection method is better than the non-injection method,
which means the crystalline quality of the film is better.
vii
Finally, this study concludes that the injection mathod can control the temperature of
precursors, the production of reactants, and the gas flow to improve the crystalline quality
of the sp2
-bonded h-BN thin films.
關鍵字(中) ★ sp2鍵結氮化硼
★ 低壓化學氣相沉積
★ 矽(111)
關鍵字(英) ★ sp2-bonded Boron Nitride
★ LPCVD
論文目次 目錄
摘要 v
Abstract vi
致謝 viii
目錄 x
圖目錄 xii
表目錄 xvii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 文獻回顧 5
1-3-1 六方氮化硼製備方式 5
1-3-2 化學氣相沉積於生長六方氮化硼使用不同前驅物 13
第二章 基礎理論 18
2-1 硼烷氨結構與特性 18
2-2 氮化硼晶體結構與性質 19
2-3 六方氮化硼薄膜特性 21
2-3-1六方氮化硼光學特性 21
第三章 實驗架構與量測儀器 23
3-1 實驗方法 23
3-1-1 低壓化學氣相沉積法(Low Pressure Chemical Vapor Deposition, LPCVD) 23
3-1-2 實驗流程 24
3-2 薄膜製程方法 26
3-2-1前驅物放置於管內 26
3-2-2引入式前驅物 27
3-3 量測儀器 29
3-3-1拉曼光譜儀 29
3-3-2紫外-可見光近紅外光譜儀(UV-VIS-NIR Spectrometer) 30
3-3-3傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 30
3-3-4原子力顯微鏡 31
3-3-5高解析度穿透式電子顯微鏡(High Resolition Transmission Electron Microscope, HR-STEM) 31
3-3-6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 32
第四章 實驗結果與討論 33
4-1 前驅物放置於管內生長Sp2氮化硼薄膜之分析 33
4-1-1 調變氬氣流量之結果分析 33
4-1-2 調變氫氣流量之結果分析 50
4-2 引入式前驅物生長Sp2鍵結氮化硼薄膜之分析 60
4-2-1調變氬氣流量之結果分析 60
4-2-2調變前驅物溫度之結果分析 68
4-3 二硫化鉬生長於氮化硼薄膜之分析 82
第五章 結論與未來研究 87
5-1 結論 87
5-2 未來展望 90
參考文獻 92

參考文獻 參考文獻
[1] I. Skvortsova. "Semiconductor Materials – Robust Growth in 2020 with Strong Outlook Post COVID-19." https://www.semi.org/en/blogs/business-markets/semiconductor-materials-outlook-covid19
[2] K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
[3] N. Goel and M. Kumar, "Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors," Journal of Materials Chemistry C, vol. 9, no. 5, pp. 1537-1549, 2021.
[4] S. Lin, "Light-emitting two-dimensional ultrathin silicon carbide," The Journal of Physical Chemistry C, vol. 116, no. 6, pp. 3951-3955, 2012.
[5] Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, "Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure," Science, vol. 317, no. 5840, pp. 932-934, 2007.
[6] K. Watanabe, T. Taniguchi, and H. Kanda, "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal," Nature materials, vol. 3, no. 6, pp. 404-409, 2004.
[7] H. Liu et al., "High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride," Nanoscale, vol. 10, no. 12, pp. 5559-5565, 2018.
[8] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, "Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 53, no. 10, p. 100209, 2014.
[9] K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, "Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride," Nature photonics, vol. 3, no. 10, pp. 591-594, 2009.
[10] C. R. Dean et al., "Boron nitride substrates for high-quality graphene electronics," Nature nanotechnology, vol. 5, no. 10, pp. 722-726, 2010.
[11] W. Auwärter, H. U. Suter, H. Sachdev, and T. Greber, "Synthesis of one monolayer of hexagonal boron nitride on Ni (111) from B-trichloroborazine (ClBNH) 3," Chemistry of materials, vol. 16, no. 2, pp. 343-345, 2004.
[12] S. Joshi et al., "Boron nitride on Cu (111): an electronically corrugated monolayer," Nano letters, vol. 12, no. 11, pp. 5821-5828, 2012.
[13] M. Morscher, M. Corso, T. Greber, and J. Osterwalder, "Formation of single layer h-BN on Pd (1 1 1)," Surface science, vol. 600, no. 16, pp. 3280-3284, 2006.
[14] F. Müller, K. Stöwe, and H. Sachdev, "Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt (111) from B-trichloroborazine (ClBNH) 3," Chemistry of materials, vol. 17, no. 13, pp. 3464-3467, 2005.
[15] X. Li et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," science, vol. 324, no. 5932, pp. 1312-1314, 2009.
[16] M. S. Bresnehan et al., "Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices," ACS nano, vol. 6, no. 6, pp. 5234-5241, 2012.
[17] C. Kim, M.-A. Yoon, B. Jang, J.-H. Kim, and K.-S. Kim, "A review on transfer process of two-dimensional materials," Tribology and Lubricants, vol. 36, no. 1, pp. 1-10, 2020.
[18] K. Ahmed, R. Dahal, A. Weltz, J. J. Lu, Y. Danon, and I. B. Bhat, "Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal boron nitride on sapphire," Materials research express, vol. 4, no. 1, p. 015007, 2017.
[19] K. Ahmed, R. Dahal, A. Weltz, J.-Q. Lu, Y. Danon, and I. Bhat, "Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection," Applied physics letters, vol. 109, no. 11, p. 113501, 2016.
[20] D. Pacile, J. Meyer, Ç. Girit, and A. Zettl, "The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes," Applied Physics Letters, vol. 92, no. 13, p. 133107, 2008.
[21] C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, "Large‐scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties," Advanced Materials, vol. 21, no. 28, pp. 2889-2893, 2009.
[22] H. Park, T. K. Kim, S. W. Cho, H. S. Jang, S. I. Lee, and S.-Y. Choi, "Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition," Scientific reports, vol. 7, no. 1, pp. 1-8, 2017.
[23] 柯志忠, 卓文浩, 林建寶, 劉柏亨, and 陳建宏, "ALD 設備與產業展望," 科儀新知, no. 196, pp. 71-80, 2013.
[24] H. Quan et al., "Stability to moisture of hexagonal boron nitride films deposited on silicon by RF magnetron sputtering," Thin Solid Films, vol. 642, pp. 90-95, 2017.
[25] M. Gao et al., "Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors," Journal of Materials Chemistry C, vol. 7, no. 47, pp. 14999-15006, 2019.
[26] R. Page, J. Casamento, Y. Cho, S. Rouvimov, H. G. Xing, and D. Jena, "Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy," Physical Review Materials, vol. 3, no. 6, p. 064001, 2019.
[27] P. M. Jean-Remy, M. J. Cabral, and R. F. Davis, "Chemical vapor deposition of sp2-boron nitride on mechanically polished pyrolytic boron nitride substrates," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 40, no. 4, p. 042203, 2022.
[28] L. Souqui, H. Pedersen, and H. Högberg, "Chemical vapor deposition of sp2-boron nitride on Si (111) substrates from triethylboron and ammonia: Effect of surface treatments," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 38, no. 4, p. 043402, 2020.
[29] X. Chen et al., "Growth of hexagonal boron nitride films on silicon substrates by low-pressure chemical vapor deposition," Journal of Materials Science: Materials in Electronics, vol. 32, no. 3, pp. 3713-3719, 2021.
[30] R. Nemanich, S. Solin, and R. M. Martin, "Light scattering study of boron nitride microcrystals," Physical Review B, vol. 23, no. 12, p. 6348, 1981.
[31] A. Rice et al., "Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride," Journal of Crystal Growth, vol. 485, pp. 90-95, 2018.
[32] R. Singhal, E. Echeverria, D. N. McIlroy, and R. N. Singh, "Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition," Thin Solid Films, vol. 733, p. 138812, 2021.
[33] F. H. Stephens, V. Pons, and R. T. Baker, "Ammonia–borane: the hydrogen source par excellence?," Dalton Transactions, no. 25, pp. 2613-2626, 2007.
[34] H. T. Hwang, A. Al-Kukhun, and A. Varma, "Hydrogen for vehicle applications from hydrothermolysis of ammonia borane: Hydrogen yield, thermal characteristics, and ammonia formation," Industrial & engineering chemistry research, vol. 49, no. 21, pp. 10994-11000, 2010.
[35] U. B. Demirci, "Ammonia borane, a material with exceptional properties for chemical hydrogen storage," International Journal of hydrogen energy, vol. 42, no. 15, pp. 9978-10013, 2017.
[36] B. Sompalle et al., "Role of sublimation kinetics of ammonia borane in chemical vapor deposition of uniform, large-area hexagonal boron nitride," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 39, no. 4, p. 042202, 2021.
[37] N. Mohajeri, T. Ali, and O. Adebiyi, "Hydrolytic cleavage of ammonia-borane complex for hydrogen production," Journal of power sources, vol. 167, no. 2, pp. 482-485, 2007.
[38] S. Frueh et al., "Pyrolytic decomposition of ammonia borane to boron nitride," Inorganic chemistry, vol. 50, no. 3, pp. 783-792, 2011.
[39] F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-Rößler, and G. Leitner, "Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods," Thermochimica Acta, vol. 391, no. 1-2, pp. 159-168, 2002.
[40] G. E. Wood, Z. P. Laker, A. J. Marsden, G. R. Bell, and N. R. Wilson, "In situ gas analysis during the growth of hexagonal boron nitride from ammonia borane," Materials Research Express, vol. 4, no. 11, p. 115905, 2017.
[41] Y. Nikaido et al., "Diffusion Monte Carlo Study on Relative Stabilities of Boron Nitride Polymorphs," The Journal of Physical Chemistry C, vol. 126, no. 13, pp. 6000-6007, 2022.
[42] M. Petrescu and M.-G. Balint, "Structure and properties modifications in boron nitride. Part I: Direct polymorphic transformations mechanisms," UPB Sci. Bull., Series B, vol. 69, no. 1, pp. 35-42, 2007.
[43] A. Soltani et al., "Diamond and cubic boron nitride: Properties, growth and applications," in AIP Conference Proceedings, 2010, vol. 1292, no. 1: American Institute of Physics, pp. 191-196.
[44] S. Bernard, C. Salameh, and P. Miele, "Boron nitride ceramics from molecular precursors: synthesis, properties and applications," Dalton Transactions, vol. 45, no. 3, pp. 861-873, 2016.
[45] Y. Maruyama, T. Kurozumi, K. Omori, H. Otsubo, T. Sato, and T. Watanabe, "Ammonothermal synthesis of rhombohedral boron nitride," Materials Letters, vol. 232, pp. 110-112, 2018.
[46] K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, "Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications," Journal of Materials Chemistry C, vol. 5, no. 46, pp. 11992-12022, 2017.
[47] J. Kang, L. Zhang, and S.-H. Wei, "A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors," The journal of physical chemistry letters, vol. 7, no. 4, pp. 597-602, 2016.
[48] R. V. Gorbachev et al., "Hunting for monolayer boron nitride: optical and Raman signatures," Small, vol. 7, no. 4, pp. 465-468, 2011.
[49] U. Chandni, K. Watanabe, T. Taniguchi, and J. Eisenstein, "Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions," Nano letters, vol. 15, no. 11, pp. 7329-7333, 2015.
[50] M. M. Yimamu, Chemical vapour deposition of boron-carbon thin films from organoboron precursors. Linköping University Electronic Press, 2016.
[51] Y. Stehle et al., "Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology," Chemistry of materials, vol. 27, no. 23, pp. 8041-8047, 2015.
[52] S. Sharma et al., "Morphology-controlled synthesis of hexagonal boron nitride crystals by chemical vapor deposition," Crystal Growth & Design, vol. 16, no. 11, pp. 6440-6445, 2016.
[53] H. N. Ding, D. J. J. Hu, X. T. Yu, X. X. Liu, Y. F. Zhu, and G. H. Wang, "Review on All-Fiber Online Raman Sensor with Hollow Core Microstructured Optical Fiber," (in English), Photonics, vol. 9, no. 3, p. 134, Mar 2022.
[54] X. Song et al., "A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene," 2D Materials, vol. 3, no. 3, p. 035007, 2016.
[55] Z. Shi et al., "Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride," Acs Photonics, vol. 2, no. 7, pp. 790-796, 2015.
[56] Q. Liu et al., "Porous hexagonal boron nitride sheets: effect of hydroxyl and secondary amino groups on photocatalytic hydrogen evolution," ACS Applied Nano Materials, vol. 1, no. 9, pp. 4566-4575, 2018.
[57] D.-Q. Hoang et al., "Elucidation of the growth mechanism of sputtered 2D hexagonal boron nitride nanowalls," Crystal Growth & Design, vol. 16, no. 7, pp. 3699-3708, 2016.
[58] M. S. Bresnehan et al., "Prospects of direct growth boron nitride films as substrates for graphene electronics," Journal of Materials Research, vol. 29, no. 3, pp. 459-471, 2014.
[59] M. Weber et al., "Boron nitride nanoporous membranes with high surface charge by atomic layer deposition," ACS applied materials & interfaces, vol. 9, no. 19, pp. 16669-16678, 2017.
[60] E.-S. Lee, J.-K. Park, W.-S. Lee, T.-Y. Seong, and Y.-J. Baik, "Effect of deposition temperature on the alignment of hexagonal laminates in turbostratic boron nitride thin film," Surface and Coatings Technology, vol. 242, pp. 29-33, 2014.
[61] J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," physica status solidi (b), vol. 15, no. 2, pp. 627-637, 1966.
[62] A. S. Hassanien and A. A. Akl, "Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films," Superlattices and Microstructures, vol. 89, pp. 153-169, 2016.
[63] Y. Chen et al., "Growth temperature impact on film quality of hBN grown on Al 2 O 3 using non-catalyzed borazane CVD," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 14341-14347, 2017.
[64] D. Han et al., "Role of hydrogen in the growth of boron nitride: Cubic pha.se versus hexagonal phase," Computational materials science, vol. 82, pp. 310-313, 2014.
[65] J. Han, J.-Y. Lee, H. Kwon, and J.-S. Yeo, "Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition," Nanotechnology, vol. 25, no. 14, p. 145604, 2014.
[66] Q. Cai et al., "Raman signature and phonon dispersion of atomically thin boron nitride," Nanoscale, vol. 9, no. 9, pp. 3059-3067, 2017.
[67] M. A. Bissett, M. Tsuji, and H. Ago, "Strain engineering the properties of graphene and other two-dimensional crystals," Physical Chemistry Chemical Physics, vol. 16, no. 23, pp. 11124-11138, 2014.
[68] L. G. Cançado et al., "Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials," 2D Materials, vol. 4, no. 2, p. 025039, 2017.
[69] Y. Lin, E. Welchman, T. Thonhauser, and W. L. Mao, "The structure and unconventional dihydrogen bonding of a pressure-stabilized hydrogen-rich (NH 3 BH 3)(H 2) x (x= 1.5) compound," Journal of Materials Chemistry A, vol. 5, no. 15, pp. 7111-7117, 2017.
[70] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.


指導教授 陳昇暉 審核日期 2023-3-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明