博碩士論文 108387001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:177 、訪客IP:18.116.20.74
姓名 莊翔竣(Hsiang-Chun Chuang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 領先角及電流雙迴路微步進馬達伺服驅動器開發
(Development of Microstepping Motor Servo Driver with Leading Angle-Current Dual-Loop Feedback Control)
相關論文
★ CIS數位影像處理平台之建構★ 微電鍍成長速度最佳化與影像監控
★ 橢圓辨識演算法之最佳化與誤差分析★ 頻率響應分析儀實作
★ 分散式驅動器開發★ 超音波定位平台原型開發
★ 地磁感測儀研發★ 雙頻式超音波測距系統之最佳化研究
★ 鋰電池殘電量測系統及校正★ 影像壓縮網路攝影平台
★ 智慧型網路攝影平台★ 無扭力計跑步機跑者步態量測
★ ESEMS太空氣象科學酬載叢集★ 影像辨識測試平台的開發
★ 智慧型網路攝影機開發平台★ 可補償高精度三軸地磁量測平台
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出了一種創新的微步進控制步進馬達方法,參考高精度的感測器回饋角度,以並聯調整馬達定子的領先角度及電流,即領先角度及電流雙迴路(Angle and Current Double Loop)回饋控制,簡稱ACDL回饋控制,期望在提高步進馬達定位精度的同時,也能兼顧能量效率。為了實現這個目標,本研究建構了微步進馬達控制系統的軟硬體。硬體部分主要包含了核心的微控制器電路、雙H橋PWM驅動電路、電流感測電路、高精度角度編碼器的讀回電路等。軟體則以實現ACDL控制演算法為核心,配合角度編碼器的校正以達到定位控制需要的精度,並且能夠以軟體直接切換ACDL和傳統控制方法;周邊軟體則是具有方便實驗驗證的數據取樣、儲存以及回傳通訊的功能。
為了驗證這個方法優於傳統的開迴路控制及領先角回饋控制,研究建置了一個具有偏向負載的扭力測試平台,以實測在不同控制方法及偏向扭力負載下,步進馬達在定位精度及驅動功率的差異。本研究提出的步進馬達ACDL控制方法經過實際測試,結果確實可滿足提高步進馬達的定位精度及穩定性,並且降低功耗的設計目標。
此外,這項技術使用很廉價的磁性編碼器就能達成高解析度及高精度,若取代傳統的步進馬達驅動器,並擴展應用在各種定位加工,如3D印表機或是積體電路製造的曝光機,除了改善加工設備的定位性能之外,初期能夠降低製造業投入的設備成本,長期則是降低電能的消耗。同樣的,需要極高旋轉精度控制需求的雷達系統或是飛彈尋標器,也能應用這個演算法和角度校準技術來達成性能的提升。
摘要(英) This research proposes an innovative micro-stepping control method for stepping motors, referring to the high-precision sensor feedback angle, to adjust the leading angle and current of the motor stator simultaneously, that is, the leading angle-current dual-loop feedback control, referred to as ACDL feedback control. It is expected that while improving the positioning accuracy of the stepping motor, energy efficiency can also be taken into account. To achieve this goal, this research constructs the software and hardware of the micro-stepping motor control system. The hardware mainly includes a core microcontroller unit circuit, double H-bridge pulse width modulation drive circuit, current sensing circuit, and high-precision angle encoder readback circuit. The software takes the ACDL control algorithm as the core, cooperates with the correction of the angle encoder to achieve the accuracy required for positioning control, and can directly switch between ACDL and traditional control methods with the software. The peripheral software has the functions of data sampling, storage, and return communication for convenient experimental verification.
In order to demonstrate the superiority of the proposed method over traditional open-loop control and leading angle feedback control, we constructed a torsion test platform with a biased load. This platform was utilized to assess the variances in positioning accuracy and drive power among the three control methods, considering the presence of biased torsion loads. The findings reveal that the proposed control method outperforms the other two methods by enhancing positioning accuracy and reducing power consumption in a stepping motor.
Since this technology achieves high resolution and high accuracy using very inexpensive magnetic encoders. If it replaces the traditional stepping motor driver and expands its application in various positioning processes, such as 3D printers or aligners for integrated circuit manufacturing. In addition to improving the positioning performance of processing equipment, it can reduce the equipment cost invested in the manufacturing industry in the initial stage, and reduce the power consumption in the long run. Similarly, radar systems or missile seekers that require extremely high rotational precision control requirements can also use this algorithm and angle calibration technology to improve performance.
關鍵字(中) ★ 步進馬達驅動
★ 閉迴路控制
★ 電流控制
★ 定位控制
★ 定位精度
★ 能量效率
關鍵字(英) ★ stepping motor drive
★ close-loop control
★ current control
★ position control
★ positioning accuracy
★ power efficiency
論文目次 第一章 緒論 1
1.1 研究目的 1
1.2 研究動機 1
1.3 文獻回顧 2
1.4 技術重點及研究構想 6
第二章 理論基礎及技術背景 9
2.1 馬達原理 9
2.1.1 有刷馬達 9
2.1.2 無刷馬達 10
2.2 步進馬達 10
2.2.1 步進馬達驅動原理 11
2.2.2 步進馬達微步進驅動 14
2.2.3 步進馬達磁場向量分析 15
2.2.4 步進馬達領先角PI迴路控制及磁場分析 16
2.3 步進馬達領先角及電流雙PI回路控制及磁場分析 17
2.4 編碼器 18
2.4.1 旋轉式磁性編碼器 19
2.4.2 磁性編碼器的非線性誤差數學模型 19
第三章 系統設計 22
3.1 磁性編碼器校正系統 22
3.2 馬達驅動器系統硬體架構 23
3.3 馬達驅動器系統功能方塊 24
第四章 實驗設計 36
4.1 實驗設備及配置 36
4.2 測試前置作業-編碼器校正 38
4.2.1 誤差分析 39
4.2.2 誤差模型建立 44
4.2.3 誤差校正 45
4.3 馬達以微步進開迴路驅動的誤差量測實驗設計 47
4.4 馬達負載性能測試實驗設計 47
4.5 馬達驅動器PID控制器實驗設計 48
4.6 馬達驅動器測試實驗設計 49
第五章 馬達及驅動器的性能測試 51
5.1 微步進開迴路驅動的誤差量測 51
5.2 馬達負載性能測試 52
5.3 馬達驅動器PID控制器測試 60
5.3.1 步進馬達的轉移函數及PI增益的推導 60
5.3.2 齊格勒-尼科爾斯方法 63
5.3.3 人工調整 64
5.4 馬達驅動器測試 68
5.4.1 全步進驅動 69
5.4.2 1/2步進驅動 74
5.4.3 1/4步進驅動 79
5.4.4 1/8步進驅動 83
5.4.5 1/16步進驅動 87
5.4.6 誤差統計與性能分析 92
第六章 結論與未來展望 95
參考文獻 97
參考文獻 [1] M. Zou, J. Yu, Y. Ma, L. Zhao, C. Lin. “Command filtering-based adaptive fuzzy control for permanent magnet synchronous motors with full-state constraints,”Inf. Sci., 518 (2020), pp. 1-12.
[2] Wei Q., Wang XY., Hu XP. ”Optimal control for permanent magnet synchronous motor,” J Vib Control, 20 (8) (2014), pp. 1176-1184.
[3] Hiroshi Hagino, Kenichiro Igeta.Jikken de Manabu DC Mota no Maikon-Seigyojutsu(実験で学ぶDCモータのマイコン制御術,DC Motor Microcomputer control technique learned from experiments),July. 2012, [978-4-7898-4148-1]
[4] Zsolt Albert Barabas and Alexandru Morar. “High Performance Microstepping Driver System based on Five-phase Stepper Motor (sine wave drive),” Procedia Technology, Volume 12, 2014, Pages 90-97, ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2013.12.460.
[5] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski, "High-performance nonlinear feedback control of a permanent magnet stepper motor," in IEEE Transactions on Control Systems Technology, vol. 1, no. 1, pp. 5-14, March 1993, doi: 10.1109/87.221347.
[6] Yeadon, W. H. and A. W. Yeadon, “Handbook of small electric motors. McGraw− Hill Companies,” 2001
[7] Dong-Hee Lee, Wooseong Che and Jin-Woo Ahn, "Micro-step position control with a simple voltage controller using low-cost micro-processor," 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 1378-1382, doi: 10.1109/ISIE.2010.5637223.
[8] Z. Q. Zhu, J. T. Chen, L. J. Wu and D. Howe, "Influence of Stator Asymmetry on Cogging Torque of Permanent Magnet Brushless Machines," in IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3851-3854, Nov. 2008, doi: 10.1109/TMAG.2008.2001322.
[9] S. Nian, L. Zhu, X. Luo and Z. Huang, "Analytical Methods for Optimal Rotor Step-Skewing To Minimize Cogging Torque in Permanent Magnet Motors," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8921502.
[10] Z. Q. Zhu, "A simple method for measuring cogging torque in permanent magnet machines," 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-4, doi: 10.1109/PES.2009.5275665.
[11] Abdessattar Ben Amor, “Improvement characterization resulting from the losses reduction in a linear stepping motor,” journal.esrgroups.org/jes, January 2009.
[12] S. Derammelaere et al., "The Efficiency of Hybrid Stepping Motors: Analyzing the Impact of Control Algorithms," in IEEE Industry Applications Magazine, vol. 20, no. 4, pp. 50-60, July-Aug. 2014, doi: 10.1109/MIAS.2013.2288403.
[13] H. Li and M. Jin, "Vector control and SVPWM strategy of two-phase hybrid stepping motor," 2011 International Conference on Electrical and Control Engineering, 2011, pp. 467-470, doi: 10.1109/ICECENG.2011.6057123.
[14] A. Bellini, C. Concari, G. Franceschini and A. Toscani, "Mixed-Mode PWM for High-Performance Stepping Motors," in IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3167-3177, Dec. 2007, doi: 10.1109/TIE.2007.905929.
[15] J. Pillans, "Reducing Position Errors by Vibration Optimization of Stepper Motor Drive Waveforms," in IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 5176-5183, June 2021, doi: 10.1109/TIE.2020.2982123.
[16] S. -K. Kim and C. K. Ahn, "Position Regulator With Variable Cut-Off Frequency Mechanism for Hybrid-Type Stepper Motors," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3533-3540, Oct. 2020, doi: 10.1109/TCSI.2020.2988044.
[17] W. Kim, D. Shin and C. C. Chung, "Microstepping With Nonlinear Torque Modulation for Permanent Magnet Stepper Motors," in IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1971-1979, Sept. 2013, doi: 10.1109/TCST.2012.2211079.
[18] P. Krishnamurthy and F. Khorrami, "An Analysis of the Effects of Closed-Loop Commutation Delay on Stepper Motor Control and Application to Parameter Estimation," in IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 70-77, Jan. 2008, doi: 10.1109/TCST.2007.899724.
[19] A. S. Anil Kumar, Boby George, Subhas Chandra Mukhopadhyay, “Technologies and Applications of Angle Sensors: A Review”, IEEE Sensors Journal, Volume: 21, Issue: 6, March 15, 2021
[20] T. Dziwiński, "A Novel Approach of an Absolute Encoder Coding Pattern," in IEEE Sensors Journal, vol. 15, no. 1, pp. 397-401, Jan. 2015, doi: 10.1109/JSEN.2014.2345587.
[21] S. Das, T. S. Sarkar, B. Chakraborty and H. S. Dutta, "A Simple Approach to Design a Binary Coded Absolute Shaft Encoder," in IEEE Sensors Journal, vol. 16, no. 8, pp. 2300-2305, April15, 2016, doi: 10.1109/JSEN.2016.2517122.
[22] S. Paul, J. Chang, J. E. Fletcher and S. Mukhopadhyay, "A Novel High-Resolution Optical Encoder With Axially Stacked Coded Disk for Modular Joints: Physical Modeling and Experimental Validation," in IEEE Sensors Journal, vol. 18, no. 14, pp. 6001-6008, 15 July15, 2018, doi: 10.1109/JSEN.2018.2841982.
[23] F. Cherchi, L. Disingrini, S. Gregori, G. Torelli, V. Liberali, M. Gottardi, “A digital self-calibration circuit for optical rotary encoder microsystems,” IEEE, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), 07 August 2002.
[24] S. Komatsuzaki, A. Takeyama, K. Sado, Y. Nagatsu and H. Hashimoto, "Absolute Angle Calculation for Magnetic Encoder Based On Magnetic Flux Density Difference," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi: 10.1109/IECON48115.2021.9589613.
[25] Shuanghui Hao, Yong Liu, Minghui Hao, “Study on a novel absolute magnetic encoder,” 2008 IEEE International Conference on Robotics and Biomimetics, 09 May 2009.
[26] David Rapos, Chris Mechefske, Markus Timusk, “Dynamic sensor calibration: A comparative study of a Hall effect sensor and an incremental encoder for measuring shaft rotational position,” IEEE, 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), 15 August 2016.
[27] S. Wang, Z. Wu, D. Peng, S. Chen, Z. Zhang and S. Liu, "Sensing Mechanism of a Rotary Magnetic Encoder Based on Time Grating," in IEEE Sensors Journal, vol. 18, no. 9, pp. 3677-3683, 1 May1, 2018, doi: 10.1109/JSEN.2018.2810874.
[28] Radivoje S. Popovic, Predrag M. Drljaca, Pavel Kejik, “CMOS magnetic sensors with integrated ferromagnetic parts”, Sensors and Actuators A: Physical, Volume 129, Issues 1–2, 24 May 2006, Pages 94-99.
[29] K. Nakano, T. Takahashi and S. Kawahito, "A CMOS rotary encoder using magnetic sensor arrays," in IEEE Sensors Journal, vol. 5, no. 5, pp. 889-894, Oct. 2005, doi: 10.1109/JSEN.2005.853597.
[30] Jorge Lara, Ambrish Chandra, “Position error compensation in quadrature analog magnetic encoders through an iterative optimization algorithm,” IEEE, IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 26 February 2015.
[31] M.Kayal, M.Pastre, “Automatic calibration of Hall sensor microsystems,” Microelectronics Journal, Volume 37, Issue 12, December 2006, Pages 1569-1575.
[32] X.-D.Lu, R.Graetz, D.Amin-Shahidi, K.Smeds, “On-axis self-calibration of angle encoders,” CIRP Annals, Volume 59, Issue 1, 2010, Pages 529-534.
[33] W. Wang, L. Wu, Z. Shi, D. Peng and J. Yang, "A Self-Compensation Algorithm for Electromagnetic Rotary Encoder With Unbalanced Installation," in IEEE Sensors Journal, vol. 19, no. 14, pp. 5514-5520, 15 July15, 2019, doi: 10.1109/JSEN.2019.2909059.
[34] G. Zhao et al., "Improved Eccentricity Self-Detection Method Based on Least Square Algorithm for Polar Coordinate Encoder," in IEEE Sensors Journal, vol. 21, no. 23, pp. 26902-26911, 1 Dec.1, 2021, doi: 10.1109/JSEN.2021.3120328.
[35] N. Hagiwara, Y. Suzuki, and H. Murase, "A method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 98-101, Feb. 1992.
[36] Chao-Yi Wu, Chin-Wei Chang, Ming-Tzu Ho, “A subdivision method for improving resolution of analog encoders,” IEEE, International Conference on Automatic Control (CACS), 08 February 2018.
[37] Youngwoo Lee, Sang Hyun Kim, Seung-Hi Lee, Chung Choo Chung, “Encoder Calibration Method for High Precision Servo Systems With a Sinusoidal Encoder,” IEEE Transactions on Industrial Electronics, Vol: 69, 1, Jan. 2022.
[38] Jorge Lara, Jianhong Xu, Ambrish Chandra, “A Novel Algorithm Based on Polynomial Approximations for an Efficient Error Compensation of Magnetic Analog Encoders in PMSMs for EVs,” IEEE Transactions on Industrial Electronics, Vol: 63, 6 June 2016.
[39] M. Benammar, A. Khattab, S. Saleh, F. Bensaali and F. Touati, "A Sinusoidal Encoder-to-Digital Converter Based on an Improved Tangent Method," in IEEE Sensors Journal, vol. 17, no. 16, pp. 5169-5179, 15 Aug.15, 2017, doi: 10.1109/JSEN.2017.2723619.
[40] M. Kayal, F. Burger and R. S. Popovic, "Magnetic angular encoder using an offset compensation technique," in IEEE Sensors Journal, vol. 4, no. 6, pp. 759-763, Dec. 2004, doi: 10.1109/JSEN.2004.836864.
[41] Mihai Cheles, ”Sensorless Field Oriented Control (FOC) for a Permanent Magnet Synchronous Motor (PMSM) Using a PLL Estimator and Field Weakening (FW),” (https://www.microchip.com/en-us/application-notes/an1292)
[42] S. -K. Kim and C. K. Ahn, "Variable-Performance Positioning Law for Hybrid-Type Stepper Motors via Active Damping Injection and Disturbance Observer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1308-1312, April 2021, doi: 10.1109/TCSII.2020.3020224.
[43] S. H. Noh, K. H. Kim, "A Study on Closed-Loop Control of a Stepping Motor for Resonance Elimination," Journal of The Korean Society of Mechanical Engineers, Vol. 15, No. 1, pp. 90-97, 1991.
[44] K. M. Le, H. Van Hoang and J. W. Jeon, "An Advanced Closed-Loop Control to Improve the Performance of Hybrid Stepper Motors," in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7244-7255, Sept. 2017, doi: 10.1109/TPEL.2016.2623341.
[45] C. Zhou and B. Liu, "A Hybrid Stepper Motor Control Solution Based on A Low-Cost Position Sensor," 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 1836-1841, doi: 10.1109/ICMA.2019.8816190.
[46] Stephen J. Chapman, Electric Machinery Fundamentals 4ed, pp.473-485
[47] Chang-liang Xia (2012). Permanent Magnet Brushless DC Motor Drives and Controls. John Wiley and Sons. pp. 18–19. ISBN 978-1118188361.
[48] P. Pillay and R. Krishnan, "Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives", IEEE Trans. Ind. App., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[49] D. Gerada, A. Mebarki, N.L. Brown, C. Gerada, A. Cavagnino and A. Boglietti, "High-speed electrical machines: Technologies trends and developments", IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2946-2959, Jun. 2014.
[50] F. Bernardi, E. Carfagna, G. Migliazza, G. Buticchi, F. Immovilli and E. Lorenzani, "Performance Analysis of Current Control Strategies for Hybrid Stepper Motors," in IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 460-472, 2022, doi: 10.1109/OJIES.2022.3185659.
[51] Takashi Kenjo, “Stepping motors and their microprocessor controls monographs in electrical and electronic engineering,” Oxford University, 1984,pp. 25-49
[52] Douglas W. Jones, “Control of Stepping Motors - A Tutorial,” University of Iowa (http://homepage.divms.uiowa.edu/~jones/step/)
[53] A. Arias, J. Caum, E. Ibarra and R. Griñó, "Reducing the Cogging Torque Effects in Hybrid Stepper Machines by Means of Resonant Controllers," in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2603-2612, April 2019, doi: 10.1109/TIE.2018.2844786.
[54] M. Bodson, J. S. Sato and S. R. Silver, "Spontaneous speed reversals in stepper motors," in IEEE Transactions on Control Systems Technology, vol. 14, no. 2, pp. 369-373, March 2006, doi: 10.1109/TCST.2005.863675.
[55] K. W. -H. Tsui, N. C. Cheung and K. C. -W. Yuen, "Novel Modeling and Damping Technique for Hybrid Stepper Motor," in IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 202-211, Jan. 2009, doi: 10.1109/TIE.2008.2008791.
[56] M. Metz, A. Haberli, M. Schneider, R. Steiner, C. Maier, H. Baltes, “Contactless angle measurement using four Hall devices on single chip”, Proceedings of International Solid State Sensors and Actuators Conference (Transducers ′97), June 1997.
[57] C. Schott, R. Racz, S. Huber, “Novel analog magnetic angle sensor with linear output”, Sensors and Actuators A: Physical, Volume 132, Issue 1, 8 November 2006, Pages 165-170.
[58] “AS5047D Datasheet”, AMS Datasheet, 27 Apr 2016
[59] Ha Xuan Nguyen, Thuong Ngoc-Cong Tran, Jae Wan Park, Jae Wook Jeon, “Auto-calibration and noise reduction for the sinusoidal signals of magnetic encoders,” IEEE, IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 18 December 2017.
[60] Johann Cassar*, Andrew Sammut, Nicholas Sammut, Marco Calvi, Zarko Mitrovic, and Radivoje S. Popovic, “Calibration and Characterization of a Reduced Form-Factor High Accuracy Three-Axis Teslameter,” MDPI, Electronics, 13 January 2020.
[61] Alan V. Oppeheim, Alan S. Willsky, S. Hamid Nawab, “Signals & Systems”, 2nd ed.
[62] Raja Ramakrishnan, Abraham Gebregergis, Mohammad Islam, Tomy Sebastian, “Effect of position sensor error on the performance of PMSM drives for low torque ripple applications,” IEEE, 2013 International Electric Machines & Drives Conference, 15 July 2013.
[63] https://www.orientalmotor.com.tw/teruyo_det/teruyo_33/
[64] Sheng Fu Machinery CO.,LTD., “2020_Stepper_Catalogue,” (https://www.sumfu.com/)
[65] S. Derammelaere et al., "Sensitivity analysis of a linear model for a vector controlled hybrid stepping motor," The XIX International Conference on Electrical Machines - ICEM 2010, 2010, pp. 1-5, doi: 10.1109/ICELMACH.2010.5608052.
[66] 鄧翔冠,「微步進伺服馬達驅動器設計」,國立中央大學光機電工程研究所,碩士論文,2020。
[67] 沈晏平,「應用C4M-OS實作微步進馬達伺服驅動器」,國立中央大學光機電工程研究所,碩士論文,2021。
[68] 孔崇維,「步進馬達伺服控制驅動器設計改良及校正」,國立中央大學光機電工程研究所,碩士論文,2022。
[69] 江士標,「大綱-微步進伺服馬達驅動器設計」,國立中央大學光機電工程研究所,未公開文件,2022。
[70] 江士標,「大綱-磁性編碼器非線性校正誤差補償」,國立中央大學光機電工程研究所,未公開文件,2022。
[71] 江士標,「應用C4M-OS實作微步進馬達伺服驅動器設計書」,國立中央大學光機電工程研究所,未公開文件,2021。
[72] 江士標,「應用C4M-OS實作微步進馬達伺服驅動器設計書用圖」,國立中央大學光機電工程研究所,未公開文件,2021。
[73] 江士標,「微步進馬達伺服驅動器控制說明圖」,國立中央大學光機電工程研究所,未公開文件,2021。
指導教授 江士標(Shyh-Biau Jiang) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明