參考文獻 |
[1] M. Zou, J. Yu, Y. Ma, L. Zhao, C. Lin. “Command filtering-based adaptive fuzzy control for permanent magnet synchronous motors with full-state constraints,”Inf. Sci., 518 (2020), pp. 1-12.
[2] Wei Q., Wang XY., Hu XP. ”Optimal control for permanent magnet synchronous motor,” J Vib Control, 20 (8) (2014), pp. 1176-1184.
[3] Hiroshi Hagino, Kenichiro Igeta.Jikken de Manabu DC Mota no Maikon-Seigyojutsu(実験で学ぶDCモータのマイコン制御術,DC Motor Microcomputer control technique learned from experiments),July. 2012, [978-4-7898-4148-1]
[4] Zsolt Albert Barabas and Alexandru Morar. “High Performance Microstepping Driver System based on Five-phase Stepper Motor (sine wave drive),” Procedia Technology, Volume 12, 2014, Pages 90-97, ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2013.12.460.
[5] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski, "High-performance nonlinear feedback control of a permanent magnet stepper motor," in IEEE Transactions on Control Systems Technology, vol. 1, no. 1, pp. 5-14, March 1993, doi: 10.1109/87.221347.
[6] Yeadon, W. H. and A. W. Yeadon, “Handbook of small electric motors. McGraw− Hill Companies,” 2001
[7] Dong-Hee Lee, Wooseong Che and Jin-Woo Ahn, "Micro-step position control with a simple voltage controller using low-cost micro-processor," 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 1378-1382, doi: 10.1109/ISIE.2010.5637223.
[8] Z. Q. Zhu, J. T. Chen, L. J. Wu and D. Howe, "Influence of Stator Asymmetry on Cogging Torque of Permanent Magnet Brushless Machines," in IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3851-3854, Nov. 2008, doi: 10.1109/TMAG.2008.2001322.
[9] S. Nian, L. Zhu, X. Luo and Z. Huang, "Analytical Methods for Optimal Rotor Step-Skewing To Minimize Cogging Torque in Permanent Magnet Motors," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8921502.
[10] Z. Q. Zhu, "A simple method for measuring cogging torque in permanent magnet machines," 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-4, doi: 10.1109/PES.2009.5275665.
[11] Abdessattar Ben Amor, “Improvement characterization resulting from the losses reduction in a linear stepping motor,” journal.esrgroups.org/jes, January 2009.
[12] S. Derammelaere et al., "The Efficiency of Hybrid Stepping Motors: Analyzing the Impact of Control Algorithms," in IEEE Industry Applications Magazine, vol. 20, no. 4, pp. 50-60, July-Aug. 2014, doi: 10.1109/MIAS.2013.2288403.
[13] H. Li and M. Jin, "Vector control and SVPWM strategy of two-phase hybrid stepping motor," 2011 International Conference on Electrical and Control Engineering, 2011, pp. 467-470, doi: 10.1109/ICECENG.2011.6057123.
[14] A. Bellini, C. Concari, G. Franceschini and A. Toscani, "Mixed-Mode PWM for High-Performance Stepping Motors," in IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3167-3177, Dec. 2007, doi: 10.1109/TIE.2007.905929.
[15] J. Pillans, "Reducing Position Errors by Vibration Optimization of Stepper Motor Drive Waveforms," in IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 5176-5183, June 2021, doi: 10.1109/TIE.2020.2982123.
[16] S. -K. Kim and C. K. Ahn, "Position Regulator With Variable Cut-Off Frequency Mechanism for Hybrid-Type Stepper Motors," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3533-3540, Oct. 2020, doi: 10.1109/TCSI.2020.2988044.
[17] W. Kim, D. Shin and C. C. Chung, "Microstepping With Nonlinear Torque Modulation for Permanent Magnet Stepper Motors," in IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1971-1979, Sept. 2013, doi: 10.1109/TCST.2012.2211079.
[18] P. Krishnamurthy and F. Khorrami, "An Analysis of the Effects of Closed-Loop Commutation Delay on Stepper Motor Control and Application to Parameter Estimation," in IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 70-77, Jan. 2008, doi: 10.1109/TCST.2007.899724.
[19] A. S. Anil Kumar, Boby George, Subhas Chandra Mukhopadhyay, “Technologies and Applications of Angle Sensors: A Review”, IEEE Sensors Journal, Volume: 21, Issue: 6, March 15, 2021
[20] T. Dziwiński, "A Novel Approach of an Absolute Encoder Coding Pattern," in IEEE Sensors Journal, vol. 15, no. 1, pp. 397-401, Jan. 2015, doi: 10.1109/JSEN.2014.2345587.
[21] S. Das, T. S. Sarkar, B. Chakraborty and H. S. Dutta, "A Simple Approach to Design a Binary Coded Absolute Shaft Encoder," in IEEE Sensors Journal, vol. 16, no. 8, pp. 2300-2305, April15, 2016, doi: 10.1109/JSEN.2016.2517122.
[22] S. Paul, J. Chang, J. E. Fletcher and S. Mukhopadhyay, "A Novel High-Resolution Optical Encoder With Axially Stacked Coded Disk for Modular Joints: Physical Modeling and Experimental Validation," in IEEE Sensors Journal, vol. 18, no. 14, pp. 6001-6008, 15 July15, 2018, doi: 10.1109/JSEN.2018.2841982.
[23] F. Cherchi, L. Disingrini, S. Gregori, G. Torelli, V. Liberali, M. Gottardi, “A digital self-calibration circuit for optical rotary encoder microsystems,” IEEE, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), 07 August 2002.
[24] S. Komatsuzaki, A. Takeyama, K. Sado, Y. Nagatsu and H. Hashimoto, "Absolute Angle Calculation for Magnetic Encoder Based On Magnetic Flux Density Difference," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi: 10.1109/IECON48115.2021.9589613.
[25] Shuanghui Hao, Yong Liu, Minghui Hao, “Study on a novel absolute magnetic encoder,” 2008 IEEE International Conference on Robotics and Biomimetics, 09 May 2009.
[26] David Rapos, Chris Mechefske, Markus Timusk, “Dynamic sensor calibration: A comparative study of a Hall effect sensor and an incremental encoder for measuring shaft rotational position,” IEEE, 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), 15 August 2016.
[27] S. Wang, Z. Wu, D. Peng, S. Chen, Z. Zhang and S. Liu, "Sensing Mechanism of a Rotary Magnetic Encoder Based on Time Grating," in IEEE Sensors Journal, vol. 18, no. 9, pp. 3677-3683, 1 May1, 2018, doi: 10.1109/JSEN.2018.2810874.
[28] Radivoje S. Popovic, Predrag M. Drljaca, Pavel Kejik, “CMOS magnetic sensors with integrated ferromagnetic parts”, Sensors and Actuators A: Physical, Volume 129, Issues 1–2, 24 May 2006, Pages 94-99.
[29] K. Nakano, T. Takahashi and S. Kawahito, "A CMOS rotary encoder using magnetic sensor arrays," in IEEE Sensors Journal, vol. 5, no. 5, pp. 889-894, Oct. 2005, doi: 10.1109/JSEN.2005.853597.
[30] Jorge Lara, Ambrish Chandra, “Position error compensation in quadrature analog magnetic encoders through an iterative optimization algorithm,” IEEE, IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 26 February 2015.
[31] M.Kayal, M.Pastre, “Automatic calibration of Hall sensor microsystems,” Microelectronics Journal, Volume 37, Issue 12, December 2006, Pages 1569-1575.
[32] X.-D.Lu, R.Graetz, D.Amin-Shahidi, K.Smeds, “On-axis self-calibration of angle encoders,” CIRP Annals, Volume 59, Issue 1, 2010, Pages 529-534.
[33] W. Wang, L. Wu, Z. Shi, D. Peng and J. Yang, "A Self-Compensation Algorithm for Electromagnetic Rotary Encoder With Unbalanced Installation," in IEEE Sensors Journal, vol. 19, no. 14, pp. 5514-5520, 15 July15, 2019, doi: 10.1109/JSEN.2019.2909059.
[34] G. Zhao et al., "Improved Eccentricity Self-Detection Method Based on Least Square Algorithm for Polar Coordinate Encoder," in IEEE Sensors Journal, vol. 21, no. 23, pp. 26902-26911, 1 Dec.1, 2021, doi: 10.1109/JSEN.2021.3120328.
[35] N. Hagiwara, Y. Suzuki, and H. Murase, "A method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 98-101, Feb. 1992.
[36] Chao-Yi Wu, Chin-Wei Chang, Ming-Tzu Ho, “A subdivision method for improving resolution of analog encoders,” IEEE, International Conference on Automatic Control (CACS), 08 February 2018.
[37] Youngwoo Lee, Sang Hyun Kim, Seung-Hi Lee, Chung Choo Chung, “Encoder Calibration Method for High Precision Servo Systems With a Sinusoidal Encoder,” IEEE Transactions on Industrial Electronics, Vol: 69, 1, Jan. 2022.
[38] Jorge Lara, Jianhong Xu, Ambrish Chandra, “A Novel Algorithm Based on Polynomial Approximations for an Efficient Error Compensation of Magnetic Analog Encoders in PMSMs for EVs,” IEEE Transactions on Industrial Electronics, Vol: 63, 6 June 2016.
[39] M. Benammar, A. Khattab, S. Saleh, F. Bensaali and F. Touati, "A Sinusoidal Encoder-to-Digital Converter Based on an Improved Tangent Method," in IEEE Sensors Journal, vol. 17, no. 16, pp. 5169-5179, 15 Aug.15, 2017, doi: 10.1109/JSEN.2017.2723619.
[40] M. Kayal, F. Burger and R. S. Popovic, "Magnetic angular encoder using an offset compensation technique," in IEEE Sensors Journal, vol. 4, no. 6, pp. 759-763, Dec. 2004, doi: 10.1109/JSEN.2004.836864.
[41] Mihai Cheles, ”Sensorless Field Oriented Control (FOC) for a Permanent Magnet Synchronous Motor (PMSM) Using a PLL Estimator and Field Weakening (FW),” (https://www.microchip.com/en-us/application-notes/an1292)
[42] S. -K. Kim and C. K. Ahn, "Variable-Performance Positioning Law for Hybrid-Type Stepper Motors via Active Damping Injection and Disturbance Observer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1308-1312, April 2021, doi: 10.1109/TCSII.2020.3020224.
[43] S. H. Noh, K. H. Kim, "A Study on Closed-Loop Control of a Stepping Motor for Resonance Elimination," Journal of The Korean Society of Mechanical Engineers, Vol. 15, No. 1, pp. 90-97, 1991.
[44] K. M. Le, H. Van Hoang and J. W. Jeon, "An Advanced Closed-Loop Control to Improve the Performance of Hybrid Stepper Motors," in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7244-7255, Sept. 2017, doi: 10.1109/TPEL.2016.2623341.
[45] C. Zhou and B. Liu, "A Hybrid Stepper Motor Control Solution Based on A Low-Cost Position Sensor," 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 1836-1841, doi: 10.1109/ICMA.2019.8816190.
[46] Stephen J. Chapman, Electric Machinery Fundamentals 4ed, pp.473-485
[47] Chang-liang Xia (2012). Permanent Magnet Brushless DC Motor Drives and Controls. John Wiley and Sons. pp. 18–19. ISBN 978-1118188361.
[48] P. Pillay and R. Krishnan, "Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives", IEEE Trans. Ind. App., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[49] D. Gerada, A. Mebarki, N.L. Brown, C. Gerada, A. Cavagnino and A. Boglietti, "High-speed electrical machines: Technologies trends and developments", IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2946-2959, Jun. 2014.
[50] F. Bernardi, E. Carfagna, G. Migliazza, G. Buticchi, F. Immovilli and E. Lorenzani, "Performance Analysis of Current Control Strategies for Hybrid Stepper Motors," in IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 460-472, 2022, doi: 10.1109/OJIES.2022.3185659.
[51] Takashi Kenjo, “Stepping motors and their microprocessor controls monographs in electrical and electronic engineering,” Oxford University, 1984,pp. 25-49
[52] Douglas W. Jones, “Control of Stepping Motors - A Tutorial,” University of Iowa (http://homepage.divms.uiowa.edu/~jones/step/)
[53] A. Arias, J. Caum, E. Ibarra and R. Griñó, "Reducing the Cogging Torque Effects in Hybrid Stepper Machines by Means of Resonant Controllers," in IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2603-2612, April 2019, doi: 10.1109/TIE.2018.2844786.
[54] M. Bodson, J. S. Sato and S. R. Silver, "Spontaneous speed reversals in stepper motors," in IEEE Transactions on Control Systems Technology, vol. 14, no. 2, pp. 369-373, March 2006, doi: 10.1109/TCST.2005.863675.
[55] K. W. -H. Tsui, N. C. Cheung and K. C. -W. Yuen, "Novel Modeling and Damping Technique for Hybrid Stepper Motor," in IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 202-211, Jan. 2009, doi: 10.1109/TIE.2008.2008791.
[56] M. Metz, A. Haberli, M. Schneider, R. Steiner, C. Maier, H. Baltes, “Contactless angle measurement using four Hall devices on single chip”, Proceedings of International Solid State Sensors and Actuators Conference (Transducers ′97), June 1997.
[57] C. Schott, R. Racz, S. Huber, “Novel analog magnetic angle sensor with linear output”, Sensors and Actuators A: Physical, Volume 132, Issue 1, 8 November 2006, Pages 165-170.
[58] “AS5047D Datasheet”, AMS Datasheet, 27 Apr 2016
[59] Ha Xuan Nguyen, Thuong Ngoc-Cong Tran, Jae Wan Park, Jae Wook Jeon, “Auto-calibration and noise reduction for the sinusoidal signals of magnetic encoders,” IEEE, IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 18 December 2017.
[60] Johann Cassar*, Andrew Sammut, Nicholas Sammut, Marco Calvi, Zarko Mitrovic, and Radivoje S. Popovic, “Calibration and Characterization of a Reduced Form-Factor High Accuracy Three-Axis Teslameter,” MDPI, Electronics, 13 January 2020.
[61] Alan V. Oppeheim, Alan S. Willsky, S. Hamid Nawab, “Signals & Systems”, 2nd ed.
[62] Raja Ramakrishnan, Abraham Gebregergis, Mohammad Islam, Tomy Sebastian, “Effect of position sensor error on the performance of PMSM drives for low torque ripple applications,” IEEE, 2013 International Electric Machines & Drives Conference, 15 July 2013.
[63] https://www.orientalmotor.com.tw/teruyo_det/teruyo_33/
[64] Sheng Fu Machinery CO.,LTD., “2020_Stepper_Catalogue,” (https://www.sumfu.com/)
[65] S. Derammelaere et al., "Sensitivity analysis of a linear model for a vector controlled hybrid stepping motor," The XIX International Conference on Electrical Machines - ICEM 2010, 2010, pp. 1-5, doi: 10.1109/ICELMACH.2010.5608052.
[66] 鄧翔冠,「微步進伺服馬達驅動器設計」,國立中央大學光機電工程研究所,碩士論文,2020。
[67] 沈晏平,「應用C4M-OS實作微步進馬達伺服驅動器」,國立中央大學光機電工程研究所,碩士論文,2021。
[68] 孔崇維,「步進馬達伺服控制驅動器設計改良及校正」,國立中央大學光機電工程研究所,碩士論文,2022。
[69] 江士標,「大綱-微步進伺服馬達驅動器設計」,國立中央大學光機電工程研究所,未公開文件,2022。
[70] 江士標,「大綱-磁性編碼器非線性校正誤差補償」,國立中央大學光機電工程研究所,未公開文件,2022。
[71] 江士標,「應用C4M-OS實作微步進馬達伺服驅動器設計書」,國立中央大學光機電工程研究所,未公開文件,2021。
[72] 江士標,「應用C4M-OS實作微步進馬達伺服驅動器設計書用圖」,國立中央大學光機電工程研究所,未公開文件,2021。
[73] 江士標,「微步進馬達伺服驅動器控制說明圖」,國立中央大學光機電工程研究所,未公開文件,2021。 |