博碩士論文 110226064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.137.220.166
姓名 李孟泓(Li-Meng Hong)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 應用於紫外光二極體的氮化物二維電洞氣
(Nitride-based two dimensional hole gas for UV LED applications)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 深紫外發光二極體(波長≤290 nm)在目前的設計中通常選用P型結構來提高導電性。然而,P型結構中鎂離子的摻雜會形成中間能階(位於價電帶邊界上方約 150~220 meV ),此能階會吸收量子井中載子複合後所產生的紫外光,降低元件的發光效率。因此,我們致力於開發一種以未摻雜的GaN和高品質的AlN結構形成的二維電洞氣(2-dimensional hole gas, 2DHG)來實現高導電、高穿透的性能。利用二維電洞氣,我們能解決使用P型結構中摻雜鎂離子所引起的吸光問題。同時,由於二維電洞氣之磊晶層的厚度相對傳統P型結構更薄,更能減緩P型磊晶層的吸光問題,達成高紫外光穿透的目標。
在本研究中,我們利用一維 drift-diffusion charge control solver (1D DDCC) 軟體進行能帶模擬。從模擬結果中觀察到,在15 nm的GaN磊晶覆蓋層厚度下,AlGaN量子井表面的電洞濃度可達最大值9.7×1020 cm-3。本研究使用有機金屬化學氣相沉積法成長GaN/AlN磊晶層,希望得到高品質的二維電洞氣。我們以兩吋c-plane藍寶石為基板,先成長一層AlN,再成長GaN。透過磊晶時間來調整GaN磊晶層的厚度,並分析不同厚度的GaN對於磊晶品質和元件電性的影響。未來,我們將持續優化二維電洞氣的磊晶條件,以提高磊晶品質,並將其應用於DUV LED結構,以提升發光效率。
摘要(英) Deep ultraviolet light-emitting diodes (DUV LEDs, wavelength ≤ 290 nm) typically utilize a p-type contact layer to control the current spreading and light extraction efficiency. However, doping with magnesium acceptors in the p-type layer creates impurity levels (150~220 meV above the valence band), which absorb the ultraviolet light generated by carrier recombination in the quantum well. Therefore, we are devoted to developing a two-dimensional hole gas (2DHG) formed by undoped GaN and high-quality AlN structures to achieve high conductivity and high transparency. Using the 2DHG, we can overcome the light absorption issues caused by impurity levels. Additionally, the thin (< 30 nm) epitaxial layer of 2DHG can minimize the UV absorption.
In this study, we conducted simulations using a one-dimensional drift-diffusion charge control (DDCC) solver. From the simulation results, it was observed that the hole concentration reached a maximum value of 9.7×1020 cm-3 at the GaN capping layer thickness of 15 nm on the AlGaN quantum wells. To grow high-quality 2DHG, we employed metal-organic chemical vapor deposition (MOCVD) and 2-inch c-plane sapphire substrates. We aim to form the 2DHG by the interface of GaN/AlN. The epitaxial thickness of GaN was controlled by adjusting the growth time, and the effect of GaN layer thicknesses on epitaxial quality and device electrical properties was investigated.
關鍵字(中) ★ 二維電洞氣 關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1前言 1
1.2 P型氮化物的限制與瓶頸 3
1.3 GaN/AlN的結構特性 4
1.4二維電洞氣的UV-LED應用潛力 5
1.5研究動機與論文架構 7
第二章 實驗製程、方法與儀器 8
2.1磊晶製備與結構設計 8
2.2有機金屬沉積法 10
2.3 X射線繞射儀 13
2.4霍爾量測(Hall measurement) 17
第三章 結果分析與討論 20
3.1結構模擬與磊晶 20
3.2磊晶品質與組成量測 23
3.3 Hall與I-V Curve電性量測 32
3.4磊晶覆蓋層與電洞濃度響應 37
第四章 結論與未來展望 40
第五章 參考文獻 41
參考文獻 [1] Kirsten Pisto, Ultra awesome: Ultraviolet eyesight in animals, Woodland park Zoo blog, 2012
[2] M. Kneissl, J. Rass, A brief review of III – Nitrides UV emitter Technologies and their applications, III – Nitride Ultraviolet Emitters, Springer series in Materials Science 227, Springer International Publishing, Switzerland, 2016.
[3] Narita, T.et al. “Progress on and challenges of p-type formation for GaN power devices,” J. Appl. Phys. 128, 2020.
[4] Liu, H.et al. “Non-uniform Mg distribution in GaN epilayers grown on mesa structures for applications in GaN power electronics,” Appl. Phys. Lett. 114, 2019.
[5] O, Ambacher.et al. “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[6] Chaudhuri, R.et al. “A polarization-induced 2D hole gas in undoped gallium nitride quantum wells, ” Science, 365(6460), 1454–1457, 2019.
[7] J.Epp,“X-ray diffraction (XRD) techniques for materials characterization,”Materials Characterization Using Nondestruction Evaluation (NDE) Methods, pp.81-124, 2016.
[8] P. Gay, P. B. Hirsch, and A. Kelly, “The Estimation of Dislocation Densities in Metals From X-Ray Data, ” Acta Metallurgica, Volume 1, Issue 3, pp. 315-319, 1953.
[9] C. G Dunn, and E.F Kogh, “Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe, ” Acta Metallurgica, Volume 5, Issue 10, pp. 548-554 ,1957.
[10] M A Moram and ME Vickers, “X-ray diffraction of IlI-nitrides, ” Rep. Prog.Phys., 72, 2009.
[11] Yoshihiko Muramoto, et al. “Development and future of ultraviolet light – emitting diodes: UV – LED will replace the UV lamp,” Semicond. Sci Technol. 29, 2014.
[12] Rietveld, G.et al. “DC conductivity measurements in the Van Der Pauw geometry,” IEEE Trans Instrum Meas. 52, 447~452 , 2003.
[13] Chun-Pin Huang1.et al.“High-quality AlN grown with a single substrate temperature below 1200 °C,” 2017.
[14] S. K. Patra et al., “Determination of threading dislocation density in GaN-on-sapphire by AFM and HRXRD, ” CSIR-Network of Institutes for Solar Energy.
[15] Brochen, S.et al. “Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy,” Appl. Phys. Lett. 103, 2013.
[16] Morita, D.et al. “Watt-Class High-Output-Power 365 nm Ultraviolet Light-Emitting Diodes,” Jpn. J. Appl. Phys. 43, 5945~5950 , 2004.
[17] Kneissl, M.et al. “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nature Photon. 13, 233~244, 2019.
[18] Kuo, S.et al. “Improvement of Light Extraction in Deep Ultraviolet GaN Light Emitting Diodes with Mesh P-Contacts,” Appl. Sci. 10, 2020.
[19] Wu, D.et al. “Enhanced Output Power of Near-Ultraviolet InGaN–GaN LEDs Grown on Patterned Sapphire Substrates,” IEEE Photon. Technol. Lett. 17, 288~290, 2005.
[20] Wuu, D.et al. “GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques,” Jpn. J. Appl. Phys. 43, 2004.
[21] Kim, J.et al. “Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having Ni Zn/Ag microcontacts,” Appl. Phys. Lett. 89, 2006.
指導教授 賴昆佑 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明