博碩士論文 105286002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:18.188.28.135
姓名 林士罡(Shih-Kang Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 固態光源之脈衝響應應用於非成像光學之研究
(Study of spatial impulse response of solid-state light source for nonimaging optics)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 演色性評估之相關性指標★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ 生物晶片之螢光光學檢測★ 生物晶片螢光分析之微光學模組
★ 光學式生化反應即時偵測系統★ 微液滴驅動之研究與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-20以後開放)
摘要(中) 本論文主要針對固態光源與反射杯式車燈之設計、比較與分析並
提出以線性位移不變系統的概念,結合相關性與捲積運算進行光形疊
加之光學模擬方式,並探討了二次光學系統的線性位移不變範圍,以
便透過脈衝響應對該範圍做捲積來得到一等效於朗伯面光源的成像
結果。本研究中透過定義反射式機構在光源面的線性位移不變範圍,
並以該特性來做一理想的假設,以兩軸上之線性位移不變區間來假設
整個光源面上之線性位移不變範圍,試圖尋找二次光學系統中線性位
移不變區域的區間,並以此證實了即使在機構較複雜的照明系統中,
仍存在有一定範圍的線性位移不變系統。在證明了線性位移系統在照明系統的可行性之後,我們亦提出了一個簡易的線性位移不變範圍的劃分方式,即以等宮格方式劃分光源面,藉此假設能表現出系統特性的線性位移不變範圍。將光源切分為100 等宮格,並將 100 宮格中每一等份以點光源的形式取代並且放置於中心處,各別對兩款反射杯進行模擬,其結果與等效面積之方形朗伯面光源比較之 NCC 值可達到 99.06 %以上。而利用影像處理技術,我們可以減少劃分的宮格數量與模擬需要的光線數量,並大幅的提高
運算速度。以目前的計算時間只需要朗伯面光源模擬的 1%的時間。
本論文提出一個基於固態照明光源之高效率標示牌設計,透過高效率
遠距離投射燈之設計,並搭配合歸反射結構及擴散片,可以使標示牌
被用路人清楚識別。標示牌本身因結構簡單不易損壞,而模組化的投
射燈在維護上也不再需要實施道路封閉,達到降低維護時間與成本之
巨大優勢。
摘要(英) This thesis focuses on the design, comparison, and analysis of solidstate light sources and reflector-based automotive lamps. We propose the concept of a linear shift-invariant system and combine correlation and convolution operations for optical simulations of light distribution. We also explore the linear shift-invariant range of second-order optical systems to obtain imaging results equivalent to a planar light source by convolving with the impulse response within that range. In this study, we define the linear shift-invariant range of the reflective mechanism on the light source surface and make an ideal assumption based on this characteristic. We assume the linear shift-invariant range on the entire light source surface using the linear shift-invariant intervals in two axes, attempting to identify the range of linear shift-invariant regions within the second-order optical system. This confirms the existence of a certain range of linear shiftinvariant systems even in complex lighting systems. After demonstrating the feasibility of linear shift systems in lighting systems, we propose a simple method for partitioning the linear shift-invariant range using an equidistant grid on the light source surface. The light source is divided into 100 equidistant grids, and each grid is replaced with a point light source placed at the center. Simulations are performed on two types of reflectors, comparing the results with those obtained from simulations of a square Lambertian light source with an equivalent area. The normalized crosscorrelation (NCC) value exceeds 99.06%. By utilizing image processing techniques, we can reduce the number of grids and the number of rays required for simulation, significantly improving computational speed. By the calculation method, it will reduce 99% of the calculation time compare to Lambertian light source calculation while the NCC still higher then 99%.
This thesis proposes an efficient signage design based on solid-state illumination light sources. By incorporating a high-efficiency longdistance projection lamp design, along with a combination of retroreflection structures and diffusers, passersby can clearly identify the signage. The signage itself becomes structurally simple and less prone to damage, while the modular projection lamps no longer require road closures for maintenance, offering the advantages of easy replacement and maintenance.
關鍵字(中) ★ 固態照明
★ LEDs
★ 脈衝響應
★ 非成像光學
關鍵字(英) ★ solid-state lighting
★ LEDs
★ impulse response
★ nonimaging optics
論文目次 目錄
摘要............................................. I
Abstract.........................................III
致謝..............................................V
目錄............................................. VI
圖目錄............................................VIII
表目錄............................................XX
第一章 緒論.......................................1
1-1 照明光源發展簡介...............................2
研究動機與目的.....................................6
1-3 論文大綱.......................................8
第二章 基礎原理 ...................................9
2-1 光度學........................................9
2-2 歸一化相關性係數...............................15
2-3 線性位移不變系統...............................16
第三章 車前燈之線性位移不變量分析 ...................18
3-1 車前燈之光學設計...............................18
3-2 線性位移不變量之分析............................26
第四章 脈衝響應應用於車前燈之光形模擬與分析...........34
4-1 線性位移不變區域之宮格化與車前燈光形之模擬….......34
4-2 脈衝響應應用於提高模擬計算速度之分析.............54
4-3 總結..........................................68
第五章 脈衝響應應用於高效率道路標示牌之設計...........70
5-1 復歸反射器.....................................70
5-2 系統設計.......................................72
5-3 實驗量測.......................................74
5-4 優化設計.......................................77
5-5 總結...........................................85
第六章 結論........................................86
參考文獻...........................................88
中英文名詞對照表 ...................................94
參考文獻 參考文獻
1. D. DiLaura, “A brief history of lighting, ” Optics and Photonics News, 19, 22-28 (2008).
2. Heinrich Göbel Wikipedia website, https://en.wikipedia.org/wiki/Heinrich_G%
C3%B6bel.
3. J. W. Howell and H. Schroeder, History of The Incandescent Lamp (Maqua Company, 1927).
4. Incandescent light bulb Wikipedia website, https://en.wikipedia.org/wiki/Incan
descent_light_bulb.
5. M. Josephson, Edison: a biography (McGraw-Hill, New York, 1959).
6. R. Kane and H. Sell, Revolution in lamps: a chronicle of 50 years of progress (The Fairmont Press, 2001).
7. J. Kaufman, IES Lighting Handbook 1981 Reference Volume (Illuminating Engineering Society of North America, New York, 1981).
8. B. W. D′Andrade and S. R. Forrest, “White organic light­emitting devices for solid­state lighting,” Adv. Mater. 16, 1585-1595 (2004).
9. Light Fights: LED vs. HID, https://www.premierltg.com/light-fights-led-vs-hid/.
10. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
11. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L.Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
12. A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
13. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
14. N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962).
15. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN pn junction blue light-emitting diodes,” Jpn. J. Appl. Phys. 30, L1998 (1991).
16. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys. 31, 1258 (1992).
17. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN double heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8 (1993).
18. S. Nakamura, T. Mukai, and M. Senoh, “Candela ‐ class high ‐ brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
19. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797 (1995).
20. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN multi‐quantum‐well structure laser diodes grown on MgAl2O4 substrates,” Appl. Phys. Lett. 68, 2105-2107 (1996).
21. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, 1997).
22. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US5998925 (1999).
23. Nichia′s LEDs Hit 249 Lm/W, https://compoundsemiconductor.net/article/85
255/Nichias_LEDs_Hit_249_Lm_W.
24. Cree Smashes Efficacy Milestones Again, https://reefbuilders.com/2014/03/2
7/cree-smashes-efficacy-milestones-303lmw/.
25. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
26. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. 86, 2440-2454 (2003).
27. A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Miñano and R. Mohedano, “Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps,” Opt. Express 14, 13014-13020 (2006).
28. J. Jiao and B. Wang. High-efficiency Reflector Optics for LED Automotive Forward Lighting. in Nonimaging Optics and Efficient Illumination Systems IV. (SPIE, 2007).
29. J. Jiang, C. Cheung, S. To, K. Cheng, H. Wang, and W. Lee, Design and Fabrication of Freeform Reflector for Automotive Headlamp (Power Electronics Research Centre, The Hong Kong Polytechnic University, 2006).
30. G. D. Massa, H. H. Kim, R. M. Wheeler, and C. A. Mitchell, “Plant productivity in response to LED lighting,” Hortscience 43, 1951-1956 (2008).
31. R. C. Morrow, “LED lighting in horticulture,” Hortscience 43, 1947-1950 (2008).
32. N. Yeh and J. P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175-2180 (2009).
33. Z. Feng, Y. Luo and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
34. P. Brick and T. Schmid. Automotive Headlamp Concepts with Low-beam and High-beam Out of A Single LED (Illumination Optics II. International Society for Optics and Photonics, 2011).
35. X. Zhu, Q. Zhu, H. Wu, and C. Chen, “Optical design of LED-based automotive headlamps,” Opt. Laser Technol. 45, 262-266 (2013).
36. S. Pimputkar, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180 (2009).
37. Market research future: Gobal LED lighting market overview, https://www.google.com/aclk?sa=l&ai=DChcSEwi848m6l4H_AhXLwpYKHRFsCAIYABADGgJ0bA&sig=AOD64_1vC9uRMwC411HmujxG3iw_GtAeiQ&q&adurl&ved=2ahUKEwjWgsO6l4H_AhVZU_UHHVBNBIYQ0Qx6BAgIEAE.
38. Technavio: Automotive LED Headlamps Market Growth, Size, Trends, Analysis Report by Type, Application, Region and Segment Forecast 2020-2024, https://www.technavio.com/report/automotive-led-headlamps-market-industry-analysis.
39. Global Bicycle Lights Market Size study & Forecast, by Technology (LED, Halogen, Xenon) by Mounting Type (Head light, Tail light), by Bicycle Type (Conventional, Electric), by Point of Sale (E-commerce, Retail Shops), and Regional Analysis, 2022-2029, https://www.gii.tw/report/bzc1236079-global-bicycle-lights-market-size-study-forecast.html.
40. CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE Publication No. 86 (1988b).
41. V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998).
42. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
43. K. Rossmann, “Point spread-function, line spread-function, and modulation transfer function: tools for the study of imaging systems,” Radiology 93, 257-272 (1969).
44. Kraftfahrt-Bundesamt. StVZO 22A No. 23. https://www.kba.de/DE/Home/
home_node.html.
45. UNECE. Addendum 112: Regulation No. 113. https://www.unece.org/fileadmi n/DAM/trans/main/wp29/wp29regs/R113rev2_e.pdf.
46. W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
47. H. Ries and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
48. R. A. Hicks, “Designing a mirror to realize a given projection,” J. Opt. Soc. Am. A 22, 323–330 (2005).
49. L. L. Doskolovich and S. I. Kharitonov, “Calculating the surface shape of mirrors for shaping an image in the form of a line,” J. Opt. Technol. 72, 318–321 (2005).
50. B. Parkyn and D. Pelka, “Free-form illumination lens designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808-7 (2006).
51. F. Fournier and J. Rolland, “Optimization of freeform lightpipes for light-emitting-diode projectors,” Appl. Optics 47, 957-966 (2008).
52. J. C. Chaves, W. Falicoff, B. Parkyn, P. Benítez, J. C. Miñano, “Increased brightness by light recirculation through an LED source,” Proc. SPIE 7059, 705902 (2008).
53. L. L. Doskolovich and M. A. Moiseev, “Calculations for refracting optical elements for forming directional patterns in the form of a rectangle,” J. Opt. Technol. 76, 430–434 (2009).
54. J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 093001 (2010).
55. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
56. M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19, A225-A233 (2011).
57. H. J. Cornelissen, H. Ma, C. Ho, M. Li, and C. Mu, “Compact collimators for high brightness blue LEDs using dielectric multilayers,” Proc. SPIE 8123, 81230J (2011).
58. 蔡直佑,高位移容忍度 LED 車前燈之光學設計,國立中央大學光電所碩士論文,中華民國九十九年。
59. C. C. Sun, C. S. Wu, C. Y. Hsieh, Y. H. Lee, S. K. Lin, T. X. Lee, T. H. Yang, and Y. W. Yu, ”Single reflector design for integrated low/high beam meeting multiple regulations with light field management,” Optics Express, 29, 18865-18875 (2021).
60. C. C. Sun, C. S. Wu, Y. S. Lin, Y. J. Lin, C. Y. Hsieh, S. K. Lin,T. H. Yang, and Y. W. Yu, ”Review of optical design for vehicle forward lighting based on white LEDs,” Optical Engineering, 60, 091501-091501 (2021).
61. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, ”Analysis of the far-field region of LEDs,” Opt. Express 17, 13918-13927 (2009).
62. I. Moreno, C. C. Sun, and R. Ivanov, “Far-field condition for light-emitting diode arrays,” Appl. Optics 48(6), 1190-1197 (2009).
63. C. Y. Chen, Y. S. Tang, H. Y. Yang, H. H. Chen, and T. W. SHIH, “Batwing LED with remote phosphor configuration,” United States Patent, US8497519 B2 (2011).
64. H. W. Lee and C. X. Tseng, “Batwing beam based led and backlight module using the same,” United States Patent, US20120113621 (2010).
65. R. S. West, G. D. Sasser, and J. W. Stewart, “Side emitting light emitting device,” United States Patent, US6598998 B2 (2001).
66. R. S. West, G. D. Sasser, J. W. Stewart, “Side emitting LED and lens,” United States Patent, US6679621 B2 (2011).
67. H. H. Wu, K. H. Lin, and S. T. Lin, “A study on the heat dissipation of high power multi-chip COB LEDs,” Microelectron. J. 43, 280-287 (2012)
68. Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88-98 (2004).
69. J. H. Oh, J. R. Oh, H. K. Park, and Y. G. Sung, YR Do, “New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs,” Opt. Express 19, A270-A279 (2011).
70. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photonic Tech. L. 15, 18-20 (2003).
71. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
72. W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572-7577 (2007).
73. R. B. Nilsen, and X. J. Lu, “Retroreflection technology. In Optics and Photonics for Counterterrorism and Crime Fighting,” SPIE. 5616, 47-60 (2004).
74. REMA, A brief history of retroreflective sign face sheet materials. https://www.rema.org.uk/pub/pdf/history-retroreflective-materials.pdf.
75. J. J. Snyder, “Paraxial ray analysis of a cat′s-eye retroreflector,” Applied optics 14, 1825-1828 (1975).
76. J. Wang, S. Liu, X. Meng, W. Gao, and J. Yuan, “Application of retro-reflective materials in urban buildings: a comprehensive review,” Energy and Buildings 247, 111137 (2021).
77. W. Su, and D. Li, “Retro-reflectivity and night visibility of road traffic signs,” Journal of Highway and Transportation Research and Development 4, 97-102 (2010).
78. 台灣生活網,夜間路面上自動亮起的小燈,你知道叫什麼?命名的原因,竟然這麼有趣。https://m.life.tw/?app=view&no=428161.
79. 自由時報,國道4號台中環線潭子路段通車! 豐原潭子民眾可省20分鐘路程。https://news.ltn.com.tw/news/Taichung/breakingnews/3809906.
80. 陳觀宇,高光效 LED 遠距離投射燈之研究,國立中央大學光電所碩士論文,中華民國一百零七年。
81. C. S. Wu, K. Y. Chen, X. H. Lee, S. K. Lin, C. C. Sun, J. Y. Cai, T. H. Yang, and Y. W. Yu, “Design of an LED Spot Light System with a Projection Distance of 10 km,” Crystals 9, 524 (2019).
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明