博碩士論文 110327015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:179 、訪客IP:18.116.20.74
姓名 洪浩文(Hao-Wen Hong)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 整合視覺及力量控制之六軸機械手臂系統開發
(Development of a six-axis robotic arm system integrating vision and force control)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
★ 具線性齒頂修整之螺旋齒輪接觸特性研究★ 應用投射疊紋技術於齒輪精度量測
★ 反射鏡減重與撓性支撐結構最佳化★ 曲面反射鏡減重與背向支撐撓性機構最佳化
★ 建構拉焊機感測系統之人機介面與機器學習★ 考量成像品質之最佳化塑膠透鏡結構設計
★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究
★ ZK型雙包絡蝸桿蝸輪組接觸分析★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發
★ 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發★ 平板式太陽能菲涅爾集光透鏡與二次光學元件之設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究在Linux系統的Ubuntu20.04版本下透過機器人作業系統(Robot Operating System, ROS)開發控制軟體,並透過ROS點對點網路與其分散式架構將所有資訊進行資料傳遞並整合工業用IPC、六軸工業型機械手臂、2D相機及鏡頭、六軸力量/力矩感測器以及自適應夾爪等實現軟、硬體協同的設計。
本論文之任務目標在於透過導入影像視覺定位技術以及力量感測技術,開發一種能夠基於力量及視覺進行齒輪組裝的系統,本研究導入順應性力量控制(Compliance Force Control)的系統,來實現機械手臂進行齒輪組裝任務,並透過影像視覺定位技術,改善順應性力量控制在組裝過程中因位置的不確定性而導致組裝失敗的問題,在組裝前先透過影像視覺定位組裝物件,並將位置控制整合至順應性力量控制,最後透過實驗來組裝三種大小及外型不同的機車齒輪零件,來應證該系統的可行性,並由實驗結果得證該系統確實能夠用於齒輪箱組裝任務,此成果顯示本論文成功實現了透過力量及視覺的六軸機械手臂齒輪組裝系統。
摘要(英) This research is conducted on the Ubuntu 20.04 version of the Linux system, utilizing the Robot Operating System (ROS) for the development of control software. Through ROS′s pointto-point networking and its distributed architecture, all information is transmitted and integrated, including industrial IPC, a six-axis industrial robotic arm, 2D cameras and lenses, a six-axis force/torque sensor, and an adaptive gripper. This achieves a design that synergizes both software and hardware components.
The primary objective of this thesis is to develop a system for gear assembly based on force and vision using image-based visual localization and force sensing technologies. The research incorporates Compliance Force Control to enable the robotic arm to perform gear assembly tasks. Additionally, it addresses the issue of assembly failures due to positional uncertainties during the assembly process by incorporating image-based visual localization. Prior to assembly, the system employs image-based visual localization to locate the assembly objects and integrates position control into Compliance Force Control. Finally, experiments are conducted to assemble three different motorcycle gear components of varying sizes and shapes, demonstrating the feasibility of the system. The experimental results confirm that the system can indeed be used for gearbox assembly tasks. This achievement demonstrates the successful realization of a six-axis robotic arm gear assembly system through the integration of force and vision.
關鍵字(中) ★ 力量順應性
★ 機器視覺
★ 重力補償
★ 六軸機械手臂
★ 運動學
★ 座標轉換
★ 伺服運動
關鍵字(英) ★ Compliance force control
★ Machine vision
★ Gravity compensation
★ Six-axis robotic arm
★ ROS
★ Kinematics
★ Coordinate transformation
★ Servo motion
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.2.1 順應性控制及組裝 1
1.2.2 機器視覺定位及組裝 4
1.3 研究動機和目的 6
1.4 論文架構 7
第2章 系統架構 8
2.1 硬體架構 8
2.1.1 六軸工業機械手臂 8
2.1.2 力量感測器 9
2.1.3 工業電腦 10
2.1.4 相機及鏡頭 11
2.1.5 自適應夾爪及指夾設計 12
2.2 軟體架構 15
2.2.1 ROS簡介 15
2.2.2 Moveit套件介紹 17
2.2.3 ABB EGM 系統介紹 18
第3章 研究方法 20
3.1 機器視覺及影像處理 20
3.1.1 OpenCV環境介紹 20
3.1.2 灰階化 21
3.1.3 二值化 21
3.1.4 平滑化 23
3.1.5 邊緣檢測 24
3.1.6 霍夫圓檢測 25
3.2 機器人運動控制 26
3.2.1 D-H法 26
3.2.2 正向運動學 27
3.2.3 逆向運動學 29
3.2.4 點到點運動控制 31
3.2.5 伺服運動控制 32
3.2.6 手眼校正 33
3.3 力量及位置順應性控制 39
3.3.1 力量順應性控制 39
3.3.2 重力補償 42
3.3.3 位置順應性控制 56
3.4 機器人作業系統(ROS)整合應用 58
第4章 實驗結果 62
4.1 實驗工作環境及齒輪裝配策略 62
4.2 具期望力量順應性驗證 62
4.3 齒輪箱裝配實驗 65
4.3.1 副齒輪裝配實驗 69
4.3.2 驅動齒輪裝配實驗 79
4.3.3 驅動軸組裝實驗 87
第5章 結論及未來展望 91
5.1 論文結論 91
5.2 未來展望 91
參考文獻 93
參考文獻 [1] W. Wang, R. N. K. Loh, and E. Y. Gu, “Passive Compliance Versus Active Compliancein Robot-Based Automated Assembly System,” Industrial Robot, vol. 25, pp. 48-57, 1998.
[2] D. E. Whitney, and J. M. Rourke, “Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances,” ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 108, pp. 223-232,1986.
[3] S. Joo, and F. Miyazaki, “Development of Variable RCC and Its Application,” IEEE, International Conference on Intelligent Robots and Systems, vol. 2, pp. 1326-1332, 1998.
[4] S. Lee, S. Won, and S. Choi, “Development of a New Variable Remote Center Compliance for Assembly Robots,” Advanced Robotics, vol. 14, pp. 241-255, 2000.
[5] P. C. Watson, “Remote Center Compliance System,” Unite State Patent, no. 4, 098, 001, 1978.
[6] M. H. Raibert, and J. J. Craig, “Hybrid Position/Force Control of Manipulators,” ASME, vol. 102, pp. 126-133, 1981.
[7] B. Xian, M. S. de Queiroz, D. Dawson, and I. Walker, “Task-Space Tracking Control of Robot Manipulators via Quaternion Feedback,” IEEE, Transactions on Robotics and Automation, vol. 20, no. 1, pp. 160-167, 2004.
[8] J. Baeten, and J. D. Schutter, “Hybrid Vision/Force Control at Corners in Planar Robotic-Contour Following,” IEEE/ASME, Transaction on Mechatronics, vol. 7, no. 2, pp. 143-151, 2002.
[9] K. Rabenorosoa, “Hybrid Force/Position Control applied to Automated Guiding Tasks at the Microscale,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4366-4371, 2010.
[10] D. H. Lee, M. S. Choi, H. Park, G. R. Jang, J. H. Park, and J. H. Bae, “Peg-in-Hole Assembly with Dual-Arm Robot and Dexterous Robot Hands,” IEEE, Robotics and Automation Letters, vol. 7, no. 4, pp. 8566-8573,2022.
[11] N. Hogan, “Impedance Control: An Approach to Manipulation: Part I-Theory,” ASME, vol. 107, pp.1-7, 1985.
[12] N. Hogan, “Impedance Control: An Approach to Manipulation: Part IIImplementation,” ASME, vol. 107, pp.8-16, 1985.94
[13] N. Hogan, “Impedance Control: An Approach to Manipulation: Part III- Applications,” ASME, vol. 107, pp.17-24, 1985.
[14] F. Ficuciello, L. Villani, and B. Siciliano, “Variable Impedance Control of Redundant Manipulators for Intuitive Human–Robot Physical Interaction,” IEEE, Transaction on Robotics, pp. 1-14, 2015.
[15] Y. Funabora, H. Song, and S. Doki, “Position Based Impedance Control based on Pressure Distribution for Wearable Power Assist Robots,” IEEE, International Conference on Systems, Man, and Cybernetics, pp. 1874-1879, 2014.
[16] H. Chen, and J. Xiao, “Robust Compliant Assembly Automation Using an Industrial Robot,” IEEE, Conference on Industrial Electronics and Applications (ICIEA 2011), no. 5975762, pp. 1161-1166, 2011.
[17] Y. L. Kim, H. C. Song, and J. B. Song, “Force Control based Jigless Assembly Strategy of a Unit Box Using Dual-Arm and Friction,” IEEE, International Symposium on Robotics, pp. 1-3, 2013.
[18] D. Marr, “Vision: A Computational Investigation into the Human Representation and Processing of Visual Information,” 1980.
[19] N. Otsu, “A Tlreshold Selection Method from Gray-Level Histograms,” IEEE, Transaction on Systems, Man, and Cybernetics, vol. SMC-9, no. 1, pp. 62-66, 1979.
[20] J. Canny, “A Computational Approach to Edge Detection,” IEEE, Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, 1986.
[21] R. O. Duda, and P. E. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures” Communication of the ACM, vol. 15, no. 1, 1972.
[22] J. L. Davies, and K. F. Gill, “Automated bumper assembly using a vision-guided robot,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 207, no. 1, pp. 61-72, 1993.
[23] M. Peña, I. López, and R. Osorio, “Invariant Object Recognition Robot Vision System for Assembly,” IEEE, Proceedings of the Electronics, Robotics and Automotive Mechanics Conference, vol. 1, pp. 30-36, 2006.
[24] Y. J. Huang, X. M. Zhang, X. M. Chan, and J. Ota, “Vision-guided peg-in-hole assembly by Baxter robot,” Advances in Mechanical Engineering, vol. 9, no. 12, 2017.
[25] IRB 120 , Available at:https://www.cgtrader.com/3d-models/industrial/industrialmachine/abb-irb-120(Accessed 30 Jun 2023)95
[26] IRC5 Compact,Available at:https://new.abb.com/products/robotics/zh/controllers(Accessed 30 Jun 2023)
[27] Flexpendant,Available at: https://grabcad.com/library/abb-robot-flex-pendant-1(Accessed 30 Jun 2023)
[28] Robotiq FT300,Available at: https://assets.robotiq.com/website-assets/support_documents/document/(Accessed 30 Jun 2023)
[29] AIR-300-BTO,Available at: https://www.advantech.com/en/products/65f20c25-f6ef4ab5-be3c-b7dfa7a833b3/air-300/(Accessed 30 Jun 2023)
[30] acA2500-14uc,Available at: https://www.baslerweb.com/zh-tw/shop/aca2500-14uc/(Accessed 30 Jun 2023)
[31] MK1214-C , Available at: https://www.amazon.com.au/OPTART-Pickle-SensorsLength-12-5mm/dp/B06XNVVNJR(Accessed 30 Jun 2023)
[32] Robotiq 2F-85,Available at: https://robotiq.com/products/2f85-140-adaptive-robotgripper(Accessed 30 Jun 2023)
[33] M. Quigley, B. Gerkeyy, K. Conleyy, J. Fausty, T. Footey, J. Leibsz, E. Bergery, R. Wheelery, and A. Ng, “ROS: an open-source Robot Operating System,” ICRA Workshop on Open Source Software, 2009.
[34] Moveit-Concepts,Available at : https://moveit.ros.org/documentation/concepts/(Accessed 16 Nov 2023)
[35] ABB EGM,Available at : https://github.com/ros-industrial/abb_libegm(Accessed 16 Nov 2023)
[36] H. Park, J. H. Bae, J. J. Park, M. H. Baeg, and J. Park, “Intuitive Peg-in-Hole Assembly Strategy with a Compliant Manipulator,” IEEE, International Symposium on Robotics, pp. 1-5, 2013.
[37] M. Bdiwi, J. Suchy, M. Jockesch, and A. Winkler, “Improved Peg-in-Hole (5-Pin Plug) Task: Intended for Charging Electric Vehicles by Robot System Automatically,” Journal of Industrial Information Integration, vol. 26, pp. 1-5, 2022.
[38] C. Saravanan, “Color Image to Grayscale Image Conversion,” 2010 Second 96International Conference on Computer Engineering and Applications, vol. 2, pp. 196-199, 2010.
[39] D. Bradley and, G. Roth, “Adaptive Thresholding using the Integral Image,” Journal of Graphics GPU and Game Tools, vol. 12, pp. 13-21, 2007.
[40] R. A. Haddad and, A. N. Akansu, “A class of fast gaussian binomial filters for speech and image processing,” IEEE Transactions on Signal Processing, vol. 39, no. 3, pp. 723-727, 1991.
[41] J. Denavit and, R. S. Hartenberg, “A kinematic notation for lower-pair mechanismsbased on matrices,” Trans ASME J. Appl, pp. 215-221, 1955.
[42] D. L. Pieper, “The Kinematics of Manipulators Under Computer Control,” Stanford Artificial Intelligence Report, no. AI-72, 1968.
[43] O. F. Seven, and A. Ankarali, “Inverse Kinematic Analysis of IRB120 Robot Arm,” 3th International Symposium on Innovative Approaches in Scientific Studies, Engineering and Natral Sciences, pp. 383-390, 2019.
[44] R. T. Tsai, and R. K. Lenz, “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 345-358, 1989.
[45] B. Heinrichs, N. Sepehri, and A. B. Thornton-Trump, “Position-Based Impedance Control of an Industrial Hydraulic Manipulator,” IEEE Control Systems Magazine, vol. 17, no. 1, pp 46-52, 1997.
[46] J. Duan, Z. Liu, Y. Bin, K. Cui, and Z. Dai, “Payload Identification and Gravity/Inertial Compensation for Six-Dimensional Force/Torque Sensor with a Fast and RobustTrajectory Design Approach,” MDPI Sensors, vol. 22, no. 1, pp. 439, 2022
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2023-10-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明