博碩士論文 110327028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:159 、訪客IP:18.117.7.6
姓名 劉俊笙(Jun-Sheng Liu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 藍寶石基板上飛秒雷射微形方孔鑽孔研究
(Research on Femtosecond Laser Micro Square Hole Drilling on Sapphire Substrate)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-4以後開放)
摘要(中) 藍寶石(Sapphire)是單晶的三氧化二鋁(Al2O3),擁有優異的物理性質和高化學穩定性,包括高硬度、高耐磨性、優越的熱傳導性、高溫度穩定性、高透光性,以及抗強酸鹼耐腐蝕等特點。在長晶應用上,它與氮化鎵(GaN)之間的晶格常數匹配度高,並具有出色的高溫穩定性,因此成為LED長晶的重要基板。此外,藍寶石的高硬度、耐磨性和優越的熱傳導性,也使其它成為一個理想的氮化矽(Silicon nitride,Si3N4)替代材料,可用於製作高密度探針卡(Probe card)。
然而,藍寶石的高硬脆特性,也使它的微精密加工(Micromachining)充滿挑戰性,特別是傳統的機械式加工在製作應用於探針卡、邊長數十微米的方形通孔時,已達極限。目前超快雷射的非線性吸收特性與極小的加工熱影響區(Heat affected zone, HAZ),被視為是一種極有潛力應用於藍寶石微尺寸加工的工具。本研究旨在開發超快雷射加工技術在藍寶石基板上製作低錐度、低圓角的方形通孔。在實驗中選用厚度為110微米的藍寶石基板,使用波長為515 nm、脈衝週期為300 fs的飛秒雷射進行加工。在研究中,首先嘗試了三種不同環境下的加工方式,包括在空氣中加工、將試片直接浸入水中加工以及將基板下表面浸入水中加工,比較、探討此三種加工方式的優劣。配合基板下表面浸入水中加工方式,本研究提出兩階段式加工策略: 以基板下方作為起點,首先由下而上進行加工;然後,再切換為由上而下的方式進行加工,藉此獲得無裂紋、錐度良好的方形通孔。最後,使用硫酸和磷酸的混合溶液,進一步去除凝固的再鑄層以及堆積殘渣,從而成功實現了邊長為52 µm、錐角為0⁰,深寬比為2.12的方形通孔。
摘要(英) Sapphire is a single crystal aluminum oxide (Al2O3), exhibiting exceptional physical properties and high chemical stability, including high hardness, wear resistance, excellent thermal conductivity, temperature stability, high transparency, and corrosion resistance against strong acids and alkalis. In crystal growth applications, its high lattice constant matching with gallium nitride (GaN) and outstanding high temperature stability make it a crucial substrate for LED crystal growth. Additionally, the high hardness, wear resistance, and excellent thermal conductivity of sapphire position it as a promising alternative to silicon nitride (Si3N4) for high-density probe card substrates.
However, the high hardness and brittleness of sapphire pose challenges in micro-precision machining, especially when traditional mechanical machining reaches its limits in creating square micro-holes with side lengths in the tens of micrometers for applications like probe cards. Currently, the nonlinear absorption characteristics of ultrafast lasers and their minimal heat-affected zones (HAZ) are considered highly promising for micro-scale sapphire processing. This study aims to develop ultrafast laser machining techniques for creating low-taper, low-rounded square micro-holes on sapphire substrates. In the experiments, a 110-micrometer thick sapphire substrate was taken, and machining was performed using a femtosecond laser with a wavelength of 515 nm and a pulse duration of 300 fs. Three different machining environments were explored, including air, direct immersion in water, and immersion of the substrate′s bottom surface in water, with a comparative analysis of their advantages and disadvantages. The study proposes a two-stage machining strategy, starting from the bottom of the substrate with an upward process and then switching to a downward process, to obtain square micro-holes with no cracks and well-defined taper angles. Finally, a mixed solution of sulfuric acid and phosphoric acid was used to further remove solidified recast layers and accumulated residues, successfully achieving square micro-holes with side lengths of 52 µm, a taper angle of 0⁰, and an aspect ratio of 2.12.
關鍵字(中) ★ 藍寶石
★ 探針卡
★ 微精密加工
★ 超快雷射
★ 微米方形通孔
★ 三氧化二鋁沉積蝕刻
關鍵字(英) ★ Sapphire
★ Probe card
★ Micro-precision machining
★ Ultrafast laser
★ Micro-square holes
★ Aluminum oxide deposition etching
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
1 Chapter 1 緒論 1
1.1 前言 1
1.2 藍寶石的性質 4
1.3 研究背景、動機及目的 7
2 Chapter 2 文獻回顧與基礎理論 10
2.1 藍寶石加工方式 10
2.1.1 超聲波旋轉加工(Rotary Ultrasonic Machining) 10
2.1.2 電化學放電加工(Electrical discharge machining) 12
2.1.3 雷射加工(Laser Beam Machining) 14
2.2 脈衝雷射加工 16
2.2.1 原理與機制 16
2.2.2 鑽孔方式及策略 19
2.2.3 雷射鑽孔品質特徵 21
2.2.4 雷射加工藍寶石分析 24
2.2.5 以水輔助雷射鑽孔加工 27
2.3 藍寶石濕式蝕刻 29
2.4 傳承與創新 32
3 Chapter 3 實驗流程與方法 33
3.1 實驗流程 33
3.2 實驗材料準備 34
3.2.1 藍寶石晶圓 34
3.2.2 製程前晶圓清洗 34
3.3 雷射鑽孔與濕式蝕刻 35
3.3.1 雷射設備 35
3.3.2 掃描路徑規劃 38
3.3.3 濕式蝕刻製程 39
3.4 表面形貌和結構分析設備介紹 40
3.5 實驗儀器設備清單 41
4 Chapter 4 結果與討論 43
4.1 不同條件下孔洞形貌分析 43
4.1.1 於空氣中加工對孔洞形貌影響分析 44
4.1.2 於水中加工對孔洞形貌影響分析 49
4.1.3 試片背面浸入水中加工對孔洞形貌影響分析 53
4.1.4 50X物鏡對於對孔洞形貌影響分析 54
4.2 50X物鏡於試片背面浸入水中參數優化 56
4.2.1 平台移動策略 56
4.2.2 雷射頻率調整 61
4.2.3 改善後雙頻率飛秒雷射鑽孔 64
4.3 濕式蝕刻輔助改善後雙頻率飛秒雷射鑽孔 69
5 Chapter 5 結論 74
參考文獻 76
6 碩士論文口試委員問題集 79
參考文獻 [1] http://www.ghtot.com/index.php/zh/sapphire-ingot-page (accessed.
[2] H. J. Scheel, "The development of crystal growth technology," Crystal Growth Technology, pp. 1-14, 2003.
[3] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009.
[4] D. C. Harris, "A peek into the history of sapphire crystal growth," in Window and Dome Technologies VIII, 2003, vol. 5078: SPIE, pp. 1-11.
[5] https://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=2c2ef994-4cac-4cd5-8637-818a058f4730 (accessed.
[6] L. Capuano, "Laser micro/nanoprocessing and subsequent chemical etching of sapphire for surface and bulk functionalization," 2020.
[7] "Synthetic Sapphire: Global Markets." (accessed.
[8] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, "Properties of sapphire," Sapphire, pp. 55-176, 2009.
[9] V. E. Bottom, "Dielectric constants of quartz," Journal of Applied Physics, vol. 43, no. 4, pp. 1493-1495, 1972.
[10] "High Throughput Laser Processing of Guide Plates for Vertical Probe Cards." https://www.swtest.org/swtw_library/2015proc/PDF/S02_01_Sercel_SWTW2015R.pdf (accessed.
[11] "Silicon Nitride (Si3N4) Properties and Applications." https://www.azom.com/properties.aspx?ArticleID=53 (accessed.
[12] J. Wang, P. Feng, and J. Zhang, "Reduction of edge chipping in rotary ultrasonic machining by using step drill: a feasibility study," The International Journal of Advanced Manufacturing Technology, vol. 87, pp. 2809-2819, 2016.
[13] C.-C. Ho, B.-H. Huang, and P.-C. Chu, "A study based on electrochemical discharge assisted by hollow electrode and micro-nano bubble to process transparent non-conductive brittle materials," The International Journal of Advanced Manufacturing Technology, vol. 115, no. 1-2, pp. 367-382, 2021.
[14] J. Hecht, "A short history of laser development," Applied optics, vol. 49, no. 25, pp. F99-F122, 2010.
[15] W. Schulz, U. Eppelt, and R. Poprawe, "Review on laser drilling I. Fundamentals, modeling, and simulation," Journal of laser applications, vol. 25, no. 1, p. 012006, 2013.
[16] D. Schneider, M. Briere, J. McDonald, and J. Biersack, "Ion/surface interaction studies with 1-3 keV/amu ions up to Th80+," Radiation effects and defects in solids, vol. 127, no. 2, pp. 113-136, 1993.
[17] Z.-T. Wang and M.-J. Yang, "Laser-guided discharge surface texturing," in Laser Surface Engineering: Elsevier, 2015, pp. 455-467.
[18] M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, "Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics," Physical review letters, vol. 82, no. 11, p. 2394, 1999.
[19] N. Varkentina, "„Femtosecond laser-dielectric interaction at mid intensities: analysis of energy deposition and application to the ablation of fused silica an cornea “," PhD Thesis. Aix-Marseille Universite, 2012.
[20] L. Ji, M. Uzair, and T. Yan, "Structural modifications induced by ultrafast IR laser pulses in sapphire," in 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology, 2019, vol. 10842: SPIE, pp. 100-112.
[21] M. Ams, D. Little, and M. Withford, "Femtosecond-laser-induced refractive index modifications for photonic device processing," in Laser Growth and Processing of Photonic Devices: Elsevier, 2012, pp. 305-332.
[22] 夏博, 姜澜, 王素梅, 闫雪亮, and 刘鹏军, "飞秒激光微孔加工," Chinese Journal of Lasers, vol. 40, no. 2, pp. 201001--1, 2013.
[23] 张云龙, 孙树峰, 王茜, 张丰云, 刘力, and 刘世光, "激光加工微孔质量的研究," 激光与光电子学进展, vol. 58, no. 19, p. 1900002, 2021.
[24] A. Nath, "Laser drilling of metallic and nonmetallic substrates," 2014.
[25] C. Dowding, "19 - Laser ablation," in Advances in Laser Materials Processing, J. Lawrence, J. Pou, D. K. Y. Low, and E. Toyserkani Eds.: Woodhead Publishing, 2010, pp. 575-628.
[26] H. Horisawa, H. Emura, and N. Yasunaga, "Surface machining characteristics of sapphire with fifth harmonic YAG laser pulses," Vacuum, vol. 73, no. 3-4, pp. 661-666, 2004.
[27] D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. Campbell, "Laser processing of sapphire with picosecond and sub-picosecond pulses," Applied Surface Science, vol. 120, no. 1-2, pp. 65-80, 1997.
[28] G. Lott, N. Falletto, P.-J. Devilder, and R. Kling, "Optimizing the processing of sapphire with ultrashort laser pulses," Journal of Laser Applications, vol. 28, no. 2, 2016.
[29] C.-H. Tsai and C.-C. Li, "Investigation of underwater laser drilling for brittle substrates," Journal of materials processing technology, vol. 209, no. 6, pp. 2838-2846, 2009.
[30] V. Kondratenko, V. Kadomkin, L. Hung-Tu, A. Naumov, and I. Velikovskii, "Laser drilling of microholes in glass," Glass and Ceramics, vol. 77, pp. 39-42, 2020.
[31] F. Dwikusuma, D. Saulys, and T. Kuech, "Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments," Journal of The Electrochemical Society, vol. 149, no. 11, p. G603, 2002.
[32] A. Butkutė, R. Sirutkaitis, D. Gailevičius, D. Paipulas, and V. Sirutkaitis, "Sapphire Selective Laser Etching Dependence on Radiation Wavelength and Etchant," Micromachines, vol. 14, no. 1, p. 7, 2022.
[33] 蔣紹威, "使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究 Research on Laser Sapphire Vias Using Wet Etch Post-processing," 2022.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2024-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明