博碩士論文 110523069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.147.27.210
姓名 曾偉恩(Wei-En Tseng)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於雙極化天線的混合波束成型多輸入多輸出毫米波通訊系統
(Hybrid Beamforming MIMO mmWave Communication Systems Based on Dual-Polarized Antenna)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 毫米波(Millimeter wave,mmWave)是5G(5th generation wireless
systems,簡稱5G)無線通訊的重要技術,在高頻傳輸下,擁
有更高的資料傳輸速率(Data rate),同時有著更低的延遲,但是
在傳輸的過程中,卻有著相當大的損耗,以致於通訊品質大幅下
降。為了克服上述的影響,導入了波束成型(Beamforming)技術,
來為傳輸過程提供指向性,以降低損耗。在波束成型的架構中,
我們需要考量硬體成本、設計的複雜度還有可服務對象的數量,
綜合以上考量,我們選擇了混合波束成型(Hybrid Beamforming),
以取得在頻譜效率(spectral efficiency)以及成本上的平衡,混合波束成型中,每組射頻鏈(Radio Frequency chain,RF chain)透
過移相器(phase shifter)與每根天線連接,為了再更進一步的下
降成本,有人提出了子連結(sub-connected)架構,使得每組射
頻鏈只連結到對應的子陣列(sub array),來降低硬體成本及設
計複雜度,但因為射頻鏈沒有連結到每一根天線,導致頻譜效
率有所下降。在本文中,我們採用多路徑三維通道(multi-path
three-dimensional(3D)channel)為通道環境,並將擁有水平極化
(horizontal polarization)以及垂直極化(vertical polarization)的雙
極化天線(dual-polarized antenna)帶入通訊系統中,透過控制交
叉極化隔離(cross-polar discrimination,XPD),來增加訊號的集
中,以提升增益,並使用連續干擾消除(Successive Interference
Cancelation,SIC)算法,計算出預編碼器(precoder)和組合器
(combiner)的權重,以計算出其頻譜效率,最後再與全連結架構
(fully-connected)下的混合波束成型做比較。
摘要(英) Millimeter wave is an important technology for 5G (5th generation
wireless systems, 5G for short) wireless communication. Under highfrequency
transmission, it has a higher data transmission rate (Data rate)
and a lower delay. However, during the transmission process, However,
there is a considerable loss, so that the communication quality is greatly
reduced. In order to overcome the impact, we have introduced beamforming
technology to provide directivity for the transmission process to
reduce loss. In the beamforming architecture, we need to consider hardware
cost, design complexity, and the number of service objects. Basedon the above considerations, we chose hybrid beamforming to achieve
a balance between spectral efficiency and cost. In hybrid beamforming,
each radio frequency chain (RF chain) is connected to each antenna
through a phase shifter. In order to further reduce the cost, someone proposed
a sub-connected architecture, so that each radio frequency chain is
only connected to The corresponding sub-array is used to reduce hardware
cost and design complexity, but because the radio frequency chain
is not connected to each antenna, the spectral efficiency is reduced. In
this paper, we use a multi-path three-dimensional (3D) channel with the
dual-polarized antenna which had horizontal polarization and vertical polarization
into the communication system, by controlling the cross-polar
discrimination (XPD), the concentration of the signal is increased to increase
the gain, and the successive interference cancelation (SIC) algorithm
is used to calculate the weight of the precoder and combiner to
calculate its spectral efficiency, and finally compare it with the hybrid
beamforming under the fully-connected architecture.
關鍵字(中) ★ 混合波束成型
★ 多輸入多輸出正交分頻多工
★ 雙極化天線
★ 正交匹配追蹤
★ 連續干擾消除
關鍵字(英) ★ Hybrid Beamforming
★ MIMO-OFDM
★ Dual-Polarized Antenna
★ OMP
★ SIC
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 毫米波通訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 多輸入多輸出天線架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 波束成型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1 數位波束成型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 類比波束成型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 混合波束成型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 波束成型連結架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 全連結混和波束成型架構. . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 子連結混和波束成型架構. . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 雙極化天線. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
第2 章系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 傳輸系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 通道模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 毫米波通道. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 雙極化毫米波通道. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
第3 章波束成型設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 正交匹配追蹤. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 預編碼器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 組合器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 連續干擾消除. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 問題組成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 類比階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 數位階段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
第4 章系統模擬與結果分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 模擬結果分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
第5 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
參考文獻 [1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile
broadband systems,” IEEE Communications Magazine, vol. 49,
no. 6, pp. 101–107, 2011.
[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter
wave mobile communications for 5g cellular: It will work!” IEEE
Access, vol. 1, pp. 335–349, 2013.
[3] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul
and access in small cell networks,” IEEE Transactions on Communications,
vol. 61, no. 10, pp. 4391–4403, 2013.
[4] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios,
and J. Zhang, “Overview of millimeter wave communications
for fifth-generation (5g) wireless networks—with a focus on propagation
models,” IEEE Transactions on Antennas and Propagation,
vol. 65, no. 12, pp. 6213–6230, 2017.
[5] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave mimo systems,”
IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp.
1499–1513, 2014.
[6] “Ieee draft amendment to ieee standard for information technology–
telecommunications and information exchange between systems–
local and metropolitan area networks–specific requirements–part
15.3: Wireless medium access control (mac) and physical layer
(phy) specifications for high rate wireless personal area networks
(wpans): Amendment 2: Millimeter-wave based alternative physical
layer extension,” IEEE Unapproved Draft Std P802.15.3c/D08,
Mar 2009, 2009.
[7] “Ieee standard for information technology–telecommunications and
information exchange between systems–local and metropolitan area
networks–specific requirements-part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications amendment
3: Enhancements for very high throughput in the 60 ghz band,”
IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012,
as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-
2012), pp. 1–628, 2012.
[8] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim,
E. De Poorter, and I. Moerman, “A survey on hybrid beamforming
techniques in 5g: Architecture and system model perspectives,”
IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3060–
3097, 2018.
[9] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimeter
wave mimo systems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 10, no. 3, pp. 436–453, 2016.
[10] B. Liu, W. Tan, H. Hu, and H. Zhu, “Hybrid beamforming for
mmwave mimo-ofdm system with beam squint,” in 2018 IEEE 29th
Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), 2018, pp. 1422–1426.
[11] H. Van Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory, ser. Detection, Estimation, and
Modulation Theory. Wiley, 2002.
[12] H. Li, M. Li, Q. Liu, and A. L. Swindlehurst, “Dynamic hybrid
beamforming with low-resolution pss for wideband mmwave
mimo-ofdm systems,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 9, pp. 2168–2181, 2020.
[13] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, ser.
Prentice-Hall information and system sciences series. Prentice Hall, 2000. [Online]. Available: https://books.google.com.tw/
books?id=zNJFAQAAIAAJ
[14] Z. Zhang, X. Wu, and D. Liu, “Joint precoding and combining design
for hybrid beamforming systems with subconnected structure,”
IEEE Systems Journal, vol. 14, no. 1, pp. 184–195, 2020.
[15] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient
hybrid analog and digital precoding for mmwave mimo systems
with large antenna arrays,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 4, pp. 998–1009, 2016.
[16] S. Payami, M. Ghoraishi, and M. Dianati, “Hybrid beamforming for
large antenna arrays with phase shifter selection,” IEEE Transactions
on Wireless Communications, vol. 15, no. 11, pp. 7258–7271,
2016.
指導教授 張大中(Dah-Chung Chang) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明