參考文獻 |
[1] 行政院主計總處 (2022)。國情統計通報(第 246 號)。台北市:行政院。 取自https://www.stat.gov.tw/News.aspx?n=2661&sms=11020
[2] 張一岑 (2004)。 人因工程學。新北市:揚智文化事業股份有限公司.
[3] Lynes, J.A. (1977). Discomfort glare and visual distraction. Lighting Research and Technology, 9(1), pp.51-52.
[4] Kent, M. G. (2016). Temporal effects in glare response (Doctoral dissertation, University of Nottingham).
[5] Pierson, C., et al. (2018). Review of factors influencing discomfort glare perception from daylight. Leukos, 14(3), 111-148.
[6] Qin, L., et al. (2019). Understanding driver distractions in fatal crashes: An exploratory empirical analysis. Journal of Safety Research, 69, 23-31.
[7] Glimne, S., et al. (2013). Measuring glare induced visual fatigue by fixation disparity variation. Work, 45(4), 431-437.
[8] Aguirre, R. C., et al. (2008). Effect of glare on simple reaction time. JOSA A, 25(7), 1790-1798.
[9] Droździel, P., et al. (2020). Drivers ’reaction time research in the conditions in the real traffic. Open Engineering, 10(1), 35-47.
[10] Hecht, E. (2017). Optics (5th ed.). Pearson Education, Incorporated.
[11] Born, M., & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (7th ed.). Cambridge University Press.
[12] Newman, J. (2008). Physics of the Life Sciences. Springer.
[13] Voermans, J., et al. (2017). The variation of flow and turbulence across the sediment–water interface. Journal of Fluid Mechanics, 824, 413-437. doi:10.1017/jfm.2017.345
[14] Walker J. Halliday D. & Resnick R. (2011). Fundamentals of physics (9th ed.). Wiley.
[15] Bhargava S.C. (2018). A Book of Physics–In Perspective (n.p.). BS Publications.
[16] Preger, C., et al. (2021). Bottom-up field-directed self-assembly of magnetic nanoparticles into ordered nano-and macrostructures. Nanotechnology, 32(19), 195603.
[17] Ye, L., Pearson, T., Cordeau, Y., Mefford, O. T., & Crawford, T. M. (2016). Triggered self-assembly of magnetic nanoparticles. Scientific reports, 6(1), 23145.
[18] Ball, D. W. (2012). Maxwell′s Equations of Electrodynamics: An Explanation. USA: SPIE Press.
[19] International commission on illumination. (1995). Discomfort Glare in Interior Lighting. Commission Internationale de l’eclairage.
[20] Rodriguez, R. G., Yamin Garretón, J. A., & Pattini, A. E. (2016). Glare and cognitive performance in screen work in the presence of sunlight. Lighting Research & Technology, 48(2), 221-238.
[21] CIE, C. (2010). Presentation of Unified Glare Rating Tables for Indoor Lighting Luminaires. Vienna, Austria: CIE Central Bureau.
[22] 張琪芬, 王泰元, & 劉芩相. (2013). 室內照明燈具統一眩光指數 (UGR) 之研究與分析. 技術學刊, 28(4), 243-249.
[23] 孫慶成, & 陳志宏. (2011). LED 的發展與照明技術應用趨勢. 前瞻科技與管理, 1(2), 1-23.
[24] Pedrotti, F. L., Pedrotti, L. S., & Pedrotti, leno M. (2017). Introduction to Optics (3rd ed.). Pearson Education Limited.
[25] Keshavarz Hedayati, M., & Elbahri, M. (2016). Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials, 9(6), 497.
[26] Verma, A., et al. (2010). Sol–gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells. Thin Solid Films, 518(10), 2649-2653.
[27] Womack, G., et al. (2019). The performance and durability of single-layer sol-gel anti-reflection coatings applied to solar module cover glass. Surface and Coatings Technology, 358, 76-83.
[28] Liu, B. T., & Teng, Y. T. (2010). A novel method to control inner and outer haze of an anti-glare film by surface modification of light-scattering particles. Journal of colloid and interface science, 350(2), 421-426.
[29] Hu, L., et al. (2016). Fabrication and evaluation of dual function PMMA/nano-carbon composite particles for UV curable anti-glare coating. Progress in Organic Coatings, 101, 81-89.
[30] Becker, M. E., & Neumeier, J. (2011, June). 70.4: Optical Characterization of Scattering Anti‐Glare Layers. In SID Symposium Digest of Technical Papers (Vol. 42, No. 1, pp. 1038-1041). Oxford, UK: Blackwell Publishing Ltd.
[31] Liu, B., et al. (2011). Strength of the interactions between light-scattering particles and resins affects the haze of anti-glare films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1-3), 138-143.
[32] Hirose, E., & Sensui, N. (2021). Substrate selection of ascidian larva: Wettability and nano-structures. Journal of Marine Science and Engineering, 9(6), 634.
[33] Ryu, M., et al. (2019). Nanoscale optical and structural characterisation of silk. Beilstein Journal of Nanotechnology, 10(1), 922-929.
[34] Nakamura, Y., Toma, M., & Kajikawa, K. (2020). A visible and near-infrared broadband light absorber of cone-shaped metallic cavities. Applied Physics Express, 13(6), 062001.
[35] Uesugi, K., Nagayama, K., & Hirose, E. (2022). Keeping a Clean Surface under Water: Nanoscale Nipple Array Decreases Surface Adsorption and Adhesion Forces. Journal of Marine Science and Engineering, 10(1), 81.
[36] Budwig, R. (1994). Refractive index matching methods for liquid flow investigations. Experiments in fluids, 17(5), 350-355.
[37] Li, J., et al. (2005). Refractive‐index matching between liquid crystals and photopolymers. Journal of the Society for Information Display, 13(12), 1017-1026.
[38] Cruz, S., et al. (2017). Analysis of the bonding process and materials optimization for mitigating the Yellow Border defect on optically bonded automotive display panels. Displays, 48, 21-28. |