參考文獻 |
[1] A. L. Alfonso, "Printed Circuit Boards." U.S. Patent No. 3,033,914. May (1962)
[2] H. Baier, et al, "Method for Automatic Optical Inspection." U.S. Patent No. 4,570,180. Feb (1986)
[3] COGNEX :電子產品業-PCB檢測介紹。2023年10月30日
取自https://reurl.cc/eLOYy7
[4] Z. Linlin, et al, "Convolutional Neural network-based multi-label classification of PCB defects.", IET The Journal of Engineering, Vol 16, pp.1612-1616, (2018)
[5] V. A. Adibhatla, et al, “Detecting Defects in PCB using Deep Learning via Convolution Neural Networks”, 2018 13th International Microsystems, Packaging Assembly and Circuits Technology Conference (IMPACT), pp.202-205, (2018)
[6] Y. S. Deng, A. C. Luo, and M. J. Dai, "Building an Automatic Defect Verification System using Deep Neural Network for PCB Defect Classification." 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), IEEE, (2018)
[7] B. Ghosh, et al, "Defect Classification of Printed Circuit Boards based on Transfer Learning." 2018 IEEE Applied Signal Processing Conference (ASPCON), IEEE, (2018)
[8] J. Deng, et al, "Imagenet: A large-scale hierarchical image database." 2009 IEEE conference on computer vision and pattern recognition, IEEE, (2009)
[9] A. Corovic, et al, "The Real-Time Detection f Traffic Participants Using YOLO Algorithm." 2018 26th Telecommunications Forum (TELFOR), IEEE, (2018)
[10] S. Abbasi, H. Abdi, and A. Ahmadi, “A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset.” 2021 26th International Computer Conference, Computer Society of Iran (CSICC), IEEE, (2021).
[11] E. Cengil, A. Çinar, and M. Yildirim. "A Case Study: Cat-Dog Face Detector Based on YOLOv5." 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, (2021)
[12] H. T. Hung, and R. C. Chen. "Pet cat behavior recognition based on YOLO model." 2020 International Symposium on Computer, Consumer and Control (IS3C), IEEE, (2020)
[13] J. McCarthy, et al, "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.", AI magazine , pp.12-12, (2006)
[14] 創新照顧: AIDA 人流分析解決方案: 人流計數/人流密度/社交距離。2024年1月5號,取自https://reurl.cc/yYM372。
[15] J. C. Flowers, "Strong and Weak AI: Deweyan Considerations." AAAI spring symposium, Towards conscious AI systems. Vol. 2287, No.7, (2019)
[16] A. Kaplan, and M. Haenlein, "Siri, Siri, in my hand: Who’s the fairest in the land ? On the interpretations, illustrations, and implications of artificial intelligence." Business horizons, ScienceDirect, Vol.62, pp.15-25, (2019)
[17] M. I. Jordan, and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects." ScienceDirect, Vol.349, pp.255-260, (2015)
[18] R. Caruana, and A. Niculescu-Mizil, "An empirical comparison of supervised learning algorithms." Proceedings of the 23rd international conference on Machine learning, pp.161-168, (2006)
[19] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: A survey." Journal of artificial intelligence research, Vol.4, pp.237-285, (1996)
[20] Z. Ghahramani, "Unsupervised learning." Summer school on machine learning, Advanced Lectures on Machine Learning, Pp.72-112, (2003)
[21] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning." nature Vol.521, pp.436-444, (2015)
[22] A. D. Dongare, R. R. Kharde, and A. D. Kachare, "Introduction to artificial neural network." International Journal of Engineering and Innovative Technology (IJEIT), Vol.2.1, pp.189-194, (2012)
[23] 科學月刊:大腦神經元。2021年7月1日,取自https://reurl.cc/N4R7RQ。
[24] 行銷資料科學:快速反應機制-類神經網路。2019年4月8日,
取自https://reurl.cc/bDEOXy。
[25] Y. LeCun, et al, “Gradient-based learning applied to document recognition.” Proc.IEEE, Vol.86, pp.2278-2324. (1998)
[26] Y. LeCun, and Y. Bengio, “Convolutional networks for images, speech, and time series.” The handbook of brain theory and neural networks, MIT Press, Cambridge, MA, USA, pp.255-258, (1998)
[27] Y. LeCun, et al, “Handwritten digit recognition with a back-propagation network” MIT Press, Cambridge, MA, USA, pp.396-404, (1989)
[28] Ch Tseng :初探卷積神經網路。2017年9月12日,取自https://reurl.cc/v0WZDl。
[29] Yeh James :卷積神經網絡介紹(Convolutional Neural Network)。2017年12月25日,取自https://reurl.cc/RWXMp9。
[30] J. Redmon, et al, "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.779-788, (2016)
[31] F. M. Talaat, and H. ZainEldin, "An improved fire detection approach based on YOLO-v8 for smart cities." Neural Computing and Applications, Vol.35, pp.20939-20954, (2023)
[32] J. Terven, and D. Cordova-Esparza. "A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond." arXiv preprint, Computer Vision and Pattern Recognition, pp.1680-1716, (2023)
[33] W. Chen, et al. "YOLO-face: a real-time face detector." The Visual Computer Vol.37, pp.805-813, (2021)
[34] K. Chellapilla, S. Puri, and P. Simard, "High Performance Convolutional Neural Networks for Document Processing." Tenth international workshop on frontiers in handwriting recognition, HAL, (2006)
[35] Tzutalin, Darrenl : LabelImg,。2024年1月8日,取自https://reurl.cc/prMO8r。
[36] G. Van Rossum, "Python Programming Language." USENIX annual technical conference, Vol. 41, No. 1, (2007)
[37] J. Blanchette, and M. Summerfield, "C++ GUI programming with Qt 4." Prentice Hall Professional, (2006)
[38] B. A. Myers, and M. B. Rosson, "Survey on user interface programming." Proceedings of the SIGCHI conference on Human factors in computing systems. (1992)
[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks." In Proceedings of the 25th International Conference on Neural Information Processing Systems, Curran Associates Inc, Red Hook, NY, USA, Vol.1, pp.1097-1105, (2012)
[40] G. Jocher, et al, "ultralytics/yolov5: v6. 2-yolov5 classification models, apple m1, reproducibility, clearml and deci. ai integrations." Zenodo, (2022)
[41] S. Imambi, K. B. Prakash, and G. R. Kanagachidambaresan, "PyTorch." Programming with TensorFlow: Solution for Edge Computing Applications, pp.87-104, (2021)
[42] J. M. Johnson, and T. M. Khoshgoftaar, "Survey on deep learning with class imbalance." Journal of Big Data Vol.6.1, pp.1-54, (2019)
[43] S. Visa, et al, "Confusion matrix-based feature selection." Maics, Vol.710, pp.120-127, (2011)
[44] M. Zhu, "Recall, precision and average precision." Department of Statistics and Actuarial Science, University of Waterloo, Vol.2, pp.6, (2004)
[45] R. R. Selvaraju, et al, "Grad-cam: Visual explanations from deep networks via gradient-based localization." Proceedings of the IEEE international conference on computer vision, (2017)
[46] 黃柏盛,「基於人工智慧之PCB瑕疵檢測技術開發」,國立中央大學,碩士論文,民國111年。
[47] S. Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting" The journal of machine learning research, Val.15, pp.1929-1958, (2014) |