參考文獻 |
[1] 陳碧芬, “全球電動車銷量 牛津估2021年「它」搶占市場主流,” Mar. 14, 2021. https://www.chinatimes.com/realtimenews/20210314002460-260410?chdtv
[2] 黃欽勇, “車用顯示器的商機,” Jan. 16, 2023. https://www.digitimes.com.tw/col/article.asp?id=9195
[3] Yoelit Hiebert, “Micro LED顯示器的挑戰與優勢,” Apr. 06, 2020. https://www.edntaiwan.com/20200406nt31-microled-displays-the-challenges-and-advantages/
[4] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, Feb. 2010, doi: 10.1088/1468-6996/11/4/044305.
[5] K. Myny, “The development of flexible integrated circuits based on thin-film transistors,” Nat Electron, vol. 1, no. 1, pp. 30–39, Jan. 2018, doi: 10.1038/s41928-017-0008-6.
[6] Wu Y.-L., “有機電子元件(Organic Electronic Devices)”, [Online]. Available: https://beaver.ncnu.edu.tw/projects/emag/article/200504/%E6%9C%89%E6%A9%9F%E9%9B%BB%E5%AD%90%E5%85%83%E4%BB%B6.pdf
[7] J. F. Wager, B. Yeh, R. L. Hoffman, and D. A. Keszler, “An amorphous oxide semiconductor thin-film transistor route to oxide electronics,” Current Opinion in Solid State and Materials Science, vol. 18, no. 2, pp. 53–61, Apr. 2014, doi: 10.1016/j.cossms.2013.07.002.
[8] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Advanced Materials, vol. 24, no. 22, pp. 2945–2986, 2012, doi: 10.1002/adma.201103228.
[9] 陳蔚璉, “鈦及鉭應用於銦鎵鋅氧化物薄膜電晶體電極之研究,” 國立陽明交通大學, 新竹市, 2021. [Online]. Available: https://hdl.handle.net/11296/s878yt
[10] N. Kimizuku and S. Yamazaki, Eds., Physics and technology of crystalline oxide semiconductor CAAC-IGZO. Fundamentals. in Wiley-SID series in display technology. Chichester, West Sussex, United Kingdom ; [Hoboken, New Jersey]: Wiley, 2017.
[11] Dr. Adel S. Sedra and Dr. Kenneth (KC) Smith, 微電子學(第七版)(上冊)(Sedra 7/e). 滄海, 2016.
[12] Neamen Donald A, 半導體物理與元件 4/e. 東華, 2013.
[13] 羅郁仁, “無機/有機異質界面垂直發光電晶體之研究,” 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/vcde73
[14] A. Ortiz-Conde, F. J. García-Sánchez, J. Muci, A. Terán Barrios, J. J. Liou, and C.-S. Ho, “Revisiting MOSFET threshold voltage extraction methods,”
Microelectronics Reliability, vol. 53, no. 1, pp. 90–104, Jan. 2013, doi: 10.1016/j.microrel.2012.09.015.
[15] L. Petti et al., “Metal oxide semiconductor thin-film transistors for flexible electronics,” Applied Physics Reviews, vol. 3, no. 2, p. 021303, Jun. 2016, doi: 10.1063/1.4953034.
[16] H. Hosono, M. Yasukawa, and H. Kawazoe, “Novel oxide amorphous semiconductors: transparent conducting amorphous oxides,” Journal of Non-Crystalline Solids, vol. 203, pp. 334–344, Aug. 1996, doi: 10.1016/0022-3093(96)00367-5.
[17] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9–20, pp. 851–858, Jun. 2006, doi: 10.1016/j.jnoncrysol.2006.01.073.
[18] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater, vol. 2, no. 1, pp. 15–22, Jan. 2010, doi: 10.1038/asiamat.2010.5.
[19] J. G. Um and J. Jang, “Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C,” Applied Physics Letters, vol. 112, no. 16, p. 162104, Apr. 2018, doi: 10.1063/1.5007191.
[20] 潘漢昌、蕭銘華、蘇健穎、蕭健男, “透明導電薄膜簡介,” vol. 科儀新知第二十六卷, no. 一, pp. 46–55, 93年8月.
[21] S. Park, S. Bang, S. Lee, J. Park, Y. Ko, and H. Jeon, “The Effect of Annealing Ambient on the Characteristics of an Indium–Gallium–Zinc Oxide Thin Film Transistor,” J. Nanosci. Nanotech., vol. 11, no. 7, pp. 6029–6033, Jul. 2011, doi: 10.1166/jnn.2011.4360.
[22] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, doi: 10.1038/nature03090.
[23] 李正中, 薄膜光學與鍍膜技術, 第九版. 藝軒圖書出版社, 2020.
[24] A. Anders, “Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS),” J. Appl. Phys., vol. 121, no. 17, p. 171101, May 2017, doi: 10.1063/1.4978350.
[25] 鄧鈞懋, “高功率脈衝磁控濺鍍成長透明導電膜 於可撓性塑膠基板之研究,” 國立中央大學, 桃園縣, 2018. [Online]. Available: https://hdl.handle.net/11296/b7t2sm
[26] 李志偉, “功率脈衝磁控濺鍍製作高性能抗反射薄膜研究 Research of high performance anti-reflection coatings fabrication by high power impulse magnetron sputtering,” 明志科技大學材料工程系, 109A005, Feb. 2020.
[27] K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron
sputtering: A review on scientific and engineering state of the art,” Surface and Coatings Technology, vol. 204, no. 11, pp. 1661–1684, Feb. 2010, doi: 10.1016/j.surfcoat.2009.11.013.
[28] M.-J. Lee, T. I. Lee, J.-H. Cho, W. Lee, and J.-M. Myoung, “Improved bias stress stability of In–Ga–Zn–O thin film transistors by UV–ozone treatments of channel/dielectric interfaces,” Materials Science in Semiconductor Processing, vol. 30, pp. 469–475, Feb. 2015, doi: 10.1016/j.mssp.2014.10.016.
[29] J. S. Park et al., “The effect of UV-assisted cleaning on the performance and stability of amorphous oxide semiconductor thin-film transistors under illumination,” Applied Physics Letters, vol. 98, no. 1, p. 012107, Jan. 2011, doi: 10.1063/1.3536479.
[30] J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A, vol. 3, 1985.
[31] R. Green and K. Instruments, “Hall Effect Measurements in Materials Characterization”.
[32] C.-H. Wu, F.-C. Yang, W.-C. Chen, and C.-L. Chang, “Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process,” Surface and Coatings Technology, vol. 303, pp. 209–214, Oct. 2016, doi: 10.1016/j.surfcoat.2016.03.089.
[33] Y. Kang et al., “Effects of crystalline structure of IGZO thin films on the electrical and photo-stability of metal-oxide thin-film transistors,” Materials Research Bulletin, vol. 139, p. 111252, Jul. 2021, doi: 10.1016/j.materresbull.2021.111252.
[34] S. Bang, S. Lee, J. Park, S. Park, W. Jeong, and H. Jeon, “Investigation of the effects of interface carrier concentration on ZnO thin film transistors fabricated by atomic layer deposition,” J. Phys. D: Appl. Phys., vol. 42, no. 23, p. 235102, Dec. 2009, doi: 10.1088/0022-3727/42/23/235102.
[35] W.-P. Zhang, S. Chen, S.-B. Qian, and S.-J. Ding, “Effects of thermal annealing on the electrical characteristics of In-Ga-Zn-O thin-film transistors with Al 2 O 3 gate dielectric,” Semicond. Sci. Technol., vol. 30, no. 1, p. 015003, Jan. 2015, doi: 10.1088/0268-1242/30/1/015003.
[36] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, “Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide,” Journal of Non-Crystalline Solids, vol. 352, no. 9–20, pp. 1749–1752, Jun. 2006, doi: 10.1016/j.jnoncrysol.2006.01.067.
[37] Y. Li et al., “Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric,” Current Applied Physics, vol. 14, no. 7, pp. 941–945, Jul. 2014, doi: 10.1016/j.cap.2014.04.011.
[38] S. Martin, C.-S. Chiang, J.-Y. Nahm, T. Li, J. Kanicki, and Y. Ugai, “Influence of the Amorphous Silicon Thickness on Top Gate Thin-Film Transistor Electrical
Performances,” Jpn. J. Appl. Phys., vol. 40, no. 2R, p. 530, Feb. 2001, doi: 10.1143/JJAP.40.530.
[39] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., vol. 90, no. 12, p. 123512, Mar. 2007, doi: 10.1063/1.2716355.
[40] H. Y. Jung et al., “Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor,” Sci Rep, vol. 4, no. 1, p. 3765, Jan. 2014, doi: 10.1038/srep03765.
[41] Y. Tian et al., “High-performance dual-layer channel indium gallium zinc oxide thin-film transistors fabricated in different oxygen contents at low temperature,” Jpn. J. Appl. Phys., vol. 53, no. 4S, p. 04EF07, Apr. 2014, doi: 10.7567/JJAP.53.04EF07.
[42] Y. J. Yoon, B. H. Kim, and H. H. Gu, “Improvement in IGZO-based thin film transistor performance using a dual-channel structure and electron-beam-irradiation,” Semicond. Sci. Technol., vol. 34, no. 2, p. 025015, Feb. 2019, doi: 10.1088/1361-6641/aafa0c.
[43] M. M. Billah et al., “High‐Performance Coplanar Dual‐Channel a‐InGaZnO/a‐InZnO Semiconductor Thin‐Film Transistors with High Field‐Effect Mobility,” Adv. Electron. Mater., vol. 7, no. 3, p. 2000896, Mar. 2021, doi: 10.1002/aelm.202000896.
[44] C. Peng, M. Xu, L. Chen, X. Li, and J. Zhang, “Improvement of properties of top-gate IGZO TFT by oxygen-rich ultrathin in situ ITO active layer,” Jpn. J. Appl. Phys., vol. 61, no. 7, p. 070914, Jul. 2022, doi: 10.35848/1347-4065/ac7020.
[45] X. Ding et al., “Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator,” Superlattices and Microstructures, vol. 76, pp. 156–162, Dec. 2014, doi: 10.1016/j.spmi.2014.10.007.
[46] H.-S. Kim et al., “Density of States-Based Design of Metal Oxide Thin-Film Transistors for High Mobility and Superior Photostability,” ACS Appl. Mater. Interfaces, vol. 4, no. 10, pp. 5416–5421, Oct. 2012, doi: 10.1021/am301342x.
[47] H. ‐S. Choi, “Effects of low‐temperature thermal annealing on interface characteristics in IZO/IGZO dual‐channel thin‐film transistors,” Electron. lett., vol. 56, no. 23, pp. 1275–1277, Nov. 2020, doi: 10.1049/el.2020.1747. |