博碩士論文 110226051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:18.220.226.214
姓名 林育鴻(Yu-Hung Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以脈衝式磁控濺鍍法製作氧化銦鎵鋅薄膜電晶體之研究
(Research on the Fabrication of Indium Gallium Zinc Oxide Thin-film-transistor by Pulsed Magnetron Sputtering)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 近年來受新冠疫情影響,人類生活方式有著重大轉變,在減少人與人直接接觸的同時,仍需兼顧正常的資訊交流,因此需更多視訊顯示設備;以及智慧、自駕車在市場上關注度日漸攀升,連帶汽車內部相關顯示器需求提高。發展至今,多數顯示器仍依賴技術成熟且成本低廉的a-Si TFT LCD為主,然而a-Si材料有者致命的缺點,在於其載子遷移率無法提升,來滿足高端顯示器產品需求,因此科研人員積極尋覓其他材料做替換,有各種新興材料被提出與研究,其中就屬IGZO表現最為出色,能有高遷移率、低漏電流、均勻性和適合低溫製程等優勢。
本論文研究主軸會分為兩部分,第一部分會以脈衝式磁控濺鍍法沉積IGZO薄膜,透過調變UV光照基板的時間以及薄膜氧氣通量,並利用Hall、XRD與AFM量測證明,利用此方法能製作出載子濃度高,且表面粗糙度低的高品質薄膜;第二部份,則是將濺鍍的高品質薄膜,藉由黃光微影製程為薄膜電晶體,首先會去調製最合適的氧氣通量與通道層厚度,最後會將通道層分為雙層,進一步優化元件載子遷移率以及On/Off ratio。
摘要(英) In recent years, the COVID-19 pandemic has significantly changed human lifestyles, reducing direct contact between people but increasing the requirement to exchange information through video display devices. The great attention of smart and self-driving cars has also increased the demand of displays for automobiles. So far, due to its maturity and low cost, a-Si TFT LCD has been the most common display technology. However, the low carrier mobility of a-Si cannot meet the requirement of high-end display applications. As a result, researchers are actively exploring alternative materials, Among the various emerging materials, IGZO has demonstrated the best performance of its high carrier mobility, low leakage current, high uniformity, and low-temperature processability.
In this research, the IGZO thin films deposited by pulsed magnetron sputtering are shown in the first part. The results show that by varying the time of UV irradiation on the substrate and the oxygen flux through the thin films, high quality thin films with low surface roughness and high carrier concentration can be achieved by using Hall, XRD, and AFM measurements. In the second part of the research, the high quality sputtered film is fabricated into thin film transistors using a lithography process. Adjusting the oxygen flux, the thickness of the channel layer, and the channel layer into two layers, the optimal carrier mobility and on/off ratio of the device has been achieved.
關鍵字(中) ★ 氧化銦鎵鋅
★ 脈衝式磁控濺鍍
★ 薄膜電晶體
關鍵字(英) ★ IGZO
★ HiPIMS
★ TFT
論文目次 摘要 ............................................................................................................................................. i
Abstract ..................................................................................................................................... ii
誌謝 ........................................................................................................................................... iii
目錄 ........................................................................................................................................... iv
圖目錄 ....................................................................................................................................... vi
表目錄 ....................................................................................................................................... ix
1 第一章、緒論 ........................................................................................................................ 1
1-1 研究背景 ......................................................................................................................... 1
1-2 研究目的與動機 ............................................................................................................. 3
2 第二章、基礎理論 ................................................................................................................ 5
2-1 薄膜電晶體基礎結構、原理 ......................................................................................... 5
2-1-1 場效電晶體基本架構 ............................................................................................. 5
2-1-2 場效電晶體基本原理 ............................................................................................. 5
2-1-3 場效電晶體重要參數 ............................................................................................. 9
2-2 非晶氧化物半導體 ....................................................................................................... 11
2-2-1 IGZO簡介 .............................................................................................................. 11
2-2-2 載子產生 ............................................................................................................... 13
2-2-3 載子的傳導機制 ................................................................................................... 14
2-3 物理氣相沉積原理 ....................................................................................................... 15
2-4 高功率脈衝磁控濺鍍系統 ........................................................................................... 16
3 第三章、實驗架構與分析儀器 .......................................................................................... 18
3-1 製程設備 ....................................................................................................................... 18
3-1-1 磁控濺鍍設備 ....................................................................................................... 18
3-1-2 HiPIMS系統 .......................................................................................................... 18
3-1-3 紫外光臭氧清洗機(UV-Ozone) ............................................................................ 19
3-1-4 手動光罩接合對準器(Mask and Bond Aligner) .................................................. 20
3-2 實驗架構與方法 ........................................................................................................... 21
3-2-1 實驗流程圖 ........................................................................................................... 22
3-2-2 薄膜與電晶體製程 ............................................................................................... 22
3-3 分析儀器 ....................................................................................................................... 25
3-3-1 原子力顯微鏡(Atomic Force Microscope, AFM) ................................................ 25
3-3-2 霍爾量測儀(Hall measurement) ............................................................................ 25
3-3-3 三端元件量測分析儀 ........................................................................................... 26
3-3-4 高解析度穿透式電子顯微鏡(High Resolution-Transmission Electron Microscope, HR-TEM) ..................................................................................................... 27
3-3-5 X光繞射分析儀(X-ray diffraction, XRD) ............................................................ 27
3-3-6 接觸角量測儀(Contact Angle, CA) ...................................................................... 28
4 第四章、實驗結果 .............................................................................................................. 29
4-1 a-IGZO薄膜 .................................................................................................................. 29
4-1-1 紫外光/臭氧對IGZO薄膜之影響 ....................................................................... 29
4-1-2 氧氣流量對IGZO薄膜之影響 ............................................................................ 32
4-2 a-IGZO薄膜電晶體製程 .............................................................................................. 38
4-2-1 氧氣流量對於IGZO-TFT電性之影響................................................................ 39
4-2-2 通道層厚度對於IGZO-TFT電性之影響 ........................................................... 45
4-2-3 雙層通道結構對於IGZO-TFT電性之影響 ....................................................... 52
5 第五章、結論與未來展望 .................................................................................................. 70
5-1 實驗結論 ....................................................................................................................... 70
5-2 未來展望 ....................................................................................................................... 70
參考文獻 .................................................................................................................................. 71
參考文獻 [1] 陳碧芬, “全球電動車銷量 牛津估2021年「它」搶占市場主流,” Mar. 14, 2021. https://www.chinatimes.com/realtimenews/20210314002460-260410?chdtv
[2] 黃欽勇, “車用顯示器的商機,” Jan. 16, 2023. https://www.digitimes.com.tw/col/article.asp?id=9195
[3] Yoelit Hiebert, “Micro LED顯示器的挑戰與優勢,” Apr. 06, 2020. https://www.edntaiwan.com/20200406nt31-microled-displays-the-challenges-and-advantages/
[4] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, Feb. 2010, doi: 10.1088/1468-6996/11/4/044305.
[5] K. Myny, “The development of flexible integrated circuits based on thin-film transistors,” Nat Electron, vol. 1, no. 1, pp. 30–39, Jan. 2018, doi: 10.1038/s41928-017-0008-6.
[6] Wu Y.-L., “有機電子元件(Organic Electronic Devices)”, [Online]. Available: https://beaver.ncnu.edu.tw/projects/emag/article/200504/%E6%9C%89%E6%A9%9F%E9%9B%BB%E5%AD%90%E5%85%83%E4%BB%B6.pdf
[7] J. F. Wager, B. Yeh, R. L. Hoffman, and D. A. Keszler, “An amorphous oxide semiconductor thin-film transistor route to oxide electronics,” Current Opinion in Solid State and Materials Science, vol. 18, no. 2, pp. 53–61, Apr. 2014, doi: 10.1016/j.cossms.2013.07.002.
[8] E. Fortunato, P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances,” Advanced Materials, vol. 24, no. 22, pp. 2945–2986, 2012, doi: 10.1002/adma.201103228.
[9] 陳蔚璉, “鈦及鉭應用於銦鎵鋅氧化物薄膜電晶體電極之研究,” 國立陽明交通大學, 新竹市, 2021. [Online]. Available: https://hdl.handle.net/11296/s878yt
[10] N. Kimizuku and S. Yamazaki, Eds., Physics and technology of crystalline oxide semiconductor CAAC-IGZO. Fundamentals. in Wiley-SID series in display technology. Chichester, West Sussex, United Kingdom ; [Hoboken, New Jersey]: Wiley, 2017.
[11] Dr. Adel S. Sedra and Dr. Kenneth (KC) Smith, 微電子學(第七版)(上冊)(Sedra 7/e). 滄海, 2016.
[12] Neamen Donald A, 半導體物理與元件 4/e. 東華, 2013.
[13] 羅郁仁, “無機/有機異質界面垂直發光電晶體之研究,” 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/vcde73
[14] A. Ortiz-Conde, F. J. García-Sánchez, J. Muci, A. Terán Barrios, J. J. Liou, and C.-S. Ho, “Revisiting MOSFET threshold voltage extraction methods,”
Microelectronics Reliability, vol. 53, no. 1, pp. 90–104, Jan. 2013, doi: 10.1016/j.microrel.2012.09.015.
[15] L. Petti et al., “Metal oxide semiconductor thin-film transistors for flexible electronics,” Applied Physics Reviews, vol. 3, no. 2, p. 021303, Jun. 2016, doi: 10.1063/1.4953034.
[16] H. Hosono, M. Yasukawa, and H. Kawazoe, “Novel oxide amorphous semiconductors: transparent conducting amorphous oxides,” Journal of Non-Crystalline Solids, vol. 203, pp. 334–344, Aug. 1996, doi: 10.1016/0022-3093(96)00367-5.
[17] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9–20, pp. 851–858, Jun. 2006, doi: 10.1016/j.jnoncrysol.2006.01.073.
[18] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater, vol. 2, no. 1, pp. 15–22, Jan. 2010, doi: 10.1038/asiamat.2010.5.
[19] J. G. Um and J. Jang, “Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C,” Applied Physics Letters, vol. 112, no. 16, p. 162104, Apr. 2018, doi: 10.1063/1.5007191.
[20] 潘漢昌、蕭銘華、蘇健穎、蕭健男, “透明導電薄膜簡介,” vol. 科儀新知第二十六卷, no. 一, pp. 46–55, 93年8月.
[21] S. Park, S. Bang, S. Lee, J. Park, Y. Ko, and H. Jeon, “The Effect of Annealing Ambient on the Characteristics of an Indium–Gallium–Zinc Oxide Thin Film Transistor,” J. Nanosci. Nanotech., vol. 11, no. 7, pp. 6029–6033, Jul. 2011, doi: 10.1166/jnn.2011.4360.
[22] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004, doi: 10.1038/nature03090.
[23] 李正中, 薄膜光學與鍍膜技術, 第九版. 藝軒圖書出版社, 2020.
[24] A. Anders, “Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS),” J. Appl. Phys., vol. 121, no. 17, p. 171101, May 2017, doi: 10.1063/1.4978350.
[25] 鄧鈞懋, “高功率脈衝磁控濺鍍成長透明導電膜 於可撓性塑膠基板之研究,” 國立中央大學, 桃園縣, 2018. [Online]. Available: https://hdl.handle.net/11296/b7t2sm
[26] 李志偉, “功率脈衝磁控濺鍍製作高性能抗反射薄膜研究 Research of high performance anti-reflection coatings fabrication by high power impulse magnetron sputtering,” 明志科技大學材料工程系, 109A005, Feb. 2020.
[27] K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron
sputtering: A review on scientific and engineering state of the art,” Surface and Coatings Technology, vol. 204, no. 11, pp. 1661–1684, Feb. 2010, doi: 10.1016/j.surfcoat.2009.11.013.
[28] M.-J. Lee, T. I. Lee, J.-H. Cho, W. Lee, and J.-M. Myoung, “Improved bias stress stability of In–Ga–Zn–O thin film transistors by UV–ozone treatments of channel/dielectric interfaces,” Materials Science in Semiconductor Processing, vol. 30, pp. 469–475, Feb. 2015, doi: 10.1016/j.mssp.2014.10.016.
[29] J. S. Park et al., “The effect of UV-assisted cleaning on the performance and stability of amorphous oxide semiconductor thin-film transistors under illumination,” Applied Physics Letters, vol. 98, no. 1, p. 012107, Jan. 2011, doi: 10.1063/1.3536479.
[30] J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A, vol. 3, 1985.
[31] R. Green and K. Instruments, “Hall Effect Measurements in Materials Characterization”.
[32] C.-H. Wu, F.-C. Yang, W.-C. Chen, and C.-L. Chang, “Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process,” Surface and Coatings Technology, vol. 303, pp. 209–214, Oct. 2016, doi: 10.1016/j.surfcoat.2016.03.089.
[33] Y. Kang et al., “Effects of crystalline structure of IGZO thin films on the electrical and photo-stability of metal-oxide thin-film transistors,” Materials Research Bulletin, vol. 139, p. 111252, Jul. 2021, doi: 10.1016/j.materresbull.2021.111252.
[34] S. Bang, S. Lee, J. Park, S. Park, W. Jeong, and H. Jeon, “Investigation of the effects of interface carrier concentration on ZnO thin film transistors fabricated by atomic layer deposition,” J. Phys. D: Appl. Phys., vol. 42, no. 23, p. 235102, Dec. 2009, doi: 10.1088/0022-3727/42/23/235102.
[35] W.-P. Zhang, S. Chen, S.-B. Qian, and S.-J. Ding, “Effects of thermal annealing on the electrical characteristics of In-Ga-Zn-O thin-film transistors with Al 2 O 3 gate dielectric,” Semicond. Sci. Technol., vol. 30, no. 1, p. 015003, Jan. 2015, doi: 10.1088/0268-1242/30/1/015003.
[36] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, “Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide,” Journal of Non-Crystalline Solids, vol. 352, no. 9–20, pp. 1749–1752, Jun. 2006, doi: 10.1016/j.jnoncrysol.2006.01.067.
[37] Y. Li et al., “Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric,” Current Applied Physics, vol. 14, no. 7, pp. 941–945, Jul. 2014, doi: 10.1016/j.cap.2014.04.011.
[38] S. Martin, C.-S. Chiang, J.-Y. Nahm, T. Li, J. Kanicki, and Y. Ugai, “Influence of the Amorphous Silicon Thickness on Top Gate Thin-Film Transistor Electrical
Performances,” Jpn. J. Appl. Phys., vol. 40, no. 2R, p. 530, Feb. 2001, doi: 10.1143/JJAP.40.530.
[39] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., vol. 90, no. 12, p. 123512, Mar. 2007, doi: 10.1063/1.2716355.
[40] H. Y. Jung et al., “Origin of the improved mobility and photo-bias stability in a double-channel metal oxide transistor,” Sci Rep, vol. 4, no. 1, p. 3765, Jan. 2014, doi: 10.1038/srep03765.
[41] Y. Tian et al., “High-performance dual-layer channel indium gallium zinc oxide thin-film transistors fabricated in different oxygen contents at low temperature,” Jpn. J. Appl. Phys., vol. 53, no. 4S, p. 04EF07, Apr. 2014, doi: 10.7567/JJAP.53.04EF07.
[42] Y. J. Yoon, B. H. Kim, and H. H. Gu, “Improvement in IGZO-based thin film transistor performance using a dual-channel structure and electron-beam-irradiation,” Semicond. Sci. Technol., vol. 34, no. 2, p. 025015, Feb. 2019, doi: 10.1088/1361-6641/aafa0c.
[43] M. M. Billah et al., “High‐Performance Coplanar Dual‐Channel a‐InGaZnO/a‐InZnO Semiconductor Thin‐Film Transistors with High Field‐Effect Mobility,” Adv. Electron. Mater., vol. 7, no. 3, p. 2000896, Mar. 2021, doi: 10.1002/aelm.202000896.
[44] C. Peng, M. Xu, L. Chen, X. Li, and J. Zhang, “Improvement of properties of top-gate IGZO TFT by oxygen-rich ultrathin in situ ITO active layer,” Jpn. J. Appl. Phys., vol. 61, no. 7, p. 070914, Jul. 2022, doi: 10.35848/1347-4065/ac7020.
[45] X. Ding et al., “Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator,” Superlattices and Microstructures, vol. 76, pp. 156–162, Dec. 2014, doi: 10.1016/j.spmi.2014.10.007.
[46] H.-S. Kim et al., “Density of States-Based Design of Metal Oxide Thin-Film Transistors for High Mobility and Superior Photostability,” ACS Appl. Mater. Interfaces, vol. 4, no. 10, pp. 5416–5421, Oct. 2012, doi: 10.1021/am301342x.
[47] H. ‐S. Choi, “Effects of low‐temperature thermal annealing on interface characteristics in IZO/IGZO dual‐channel thin‐film transistors,” Electron. lett., vol. 56, no. 23, pp. 1275–1277, Nov. 2020, doi: 10.1049/el.2020.1747.
指導教授 陳昇暉 審核日期 2023-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明