博碩士論文 110329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.148.102.79
姓名 彭語欣(Yu-Hsin Peng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 錫添加對於鈀觸媒之乙醇和甲酸氧化反應效能之影響
(The Effect of Sn Modification of Pd Catalyst on the Ethanol and Formic Acid Oxidation Reaction Performance)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 由於環境汙染與能源需求日益增加,發展可持續再生能源已成為當務之急。乙醇燃料電池(Direct ethanol fuel cell, DEFC)和甲酸燃料電池(Direct formic acid fuel cell, DFAFC)分別以其高能量密度和高電動力而受到廣泛關注。然而,在乙醇氧化反應(Ethanol oxidation reaction, EOR)和甲酸氧化反應(Formic acid oxidation reaction, FAOR)中,觸媒面臨著複雜的反應機制與中間體的產生,導致動力學反應緩慢和觸媒中毒,從而使觸媒失活。因此,開發高活性和高穩定性的觸媒至關重要。鈀(Palladium, Pd)因其在鹼性條件下表現出優異的陽極乙醇氧化反應性能,並在陽極甲酸反應中具有良好的表現,被視為有發展潛力的陽極反應觸媒。
在本研究中,通過油胺法(Oleylamine, OAm)合成了兩種不同比例的錫(Tin, Sn)修飾Pd/C觸媒,分別為Pd85-Sn15/C和Pd95-Sn5/C。研究Sn的修飾在乙醇氧化反應和甲酸氧化反應對於Pd/C觸媒之效應,並透過調整Sn的添加量達到最佳化。通過X光電子能譜儀(X-ray photoelectron spectroscopy, XPS)、X光吸收光譜(X-ray absorption spectroscopy, XAS) 和CO剝離測試(CO-stripping),結果顯示Pd-Sn/C表面的Pd與SnO2之間的電子效應與鍵結有助於削弱Pd對中間體的吸附,表面的SnO2促進了中間體的氧化反應。同時,還觀察到微量添加Sn會暴露出更多Pd活性位點,從而促進了EOR和FAOR反應的進行。電化學結果表明,在鹼性電解質中,Pd-Sn/C展現出卓越的乙醇氧化性能,遠超過Pd/C(2131 mA/mgPd)。其中,Pd95-Sn5/C具有最佳的質量活性(MA),達到6795 mA/mgPd。此外,Pd-Sn/C還展示出優異的穩定性,在經過2小時的計時電流(Chronoamperometric, CA)穩定性測試後,其中以Pd95-Sn5/C保持了最高的殘留活性,達到592 mA/mgPd。在酸性電解質中的甲酸氧化反應方面,Pd95-Sn5/C展現出最高的質量活性3381 mA/mgPd,並且經過2小時的計時電流穩定性測試後,Pd95-Sn5/C表現出最佳的穩定性。在乙醇氧化與甲醇氧化反應中,Pd95-Sn5/C的活性皆高於Pd85-Sn15/C,這進一步證實了微量錫的添加對改善催化性能的重要性。本研究提出了一種加入微量的Sn對Pd-Sn/C 觸媒進行改質,此方法顯著提高了Pd的利用率並提高了EOR和FAOR的性能和穩定性。
摘要(英) The intensifying environmental pollution and growing energy demands have made it imperative to focus on the development of sustainable renewable energy sources. Direct ethanol fuel cell (DEFC) is highly regarded for their high energy density, while direct formic acid fuel cell (DFAFC) is known for their high-power density. However, complex reaction mechanisms on the catalyst surface and generation and poisoning of intermediates in the ethanol oxidation reaction (EOR) and formic acid oxidation reaction (FAOR), result in sluggish kinetics and deactivation. Therefore, the development of highly active and stable catalysts is of crucial importance. Palladium (Pd) is widely recognized as a highly promising catalyst for anode reactions, owing to its outstanding performance in the alkaline conditions of EOR and its favorable performance in the FAOR.
In this study, we used a simple oleylamine method to synthesize Pd-Sn/C catalysts, Pd85-Sn15/C and Pd95-Sn5/C, as the EOR and FAOR catalysts. We have investigated the effects of Sn modification on the performance of EOR and FAOR for Pd/C. Furthermore, by precisely controlling the amount of Sn added to Pd/C catalysts, their EOR and FAOR can be further optimized. X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and CO-stripping results revealed that the electronic interaction and bonding between Pd and Sn(O2) contributes to the weakening of the adsorption of intermediates on Pd. Furthermore, the presence of SnO2 on the catalyst surface enhances the oxidation of intermediates, thereby promoting the EOR and FAOR reactions. It also was observed that the addition of a small amount of Sn exposes more active sites of Pd, enhancing the electrochemical performance. Pd-Sn/C exhibits excellent EOR performance in alkaline solution, surpassing Pd/C (2131 mA/mgPd). Among them, Pd95-Sn5/C shows the best mass activity (MA) with a value of 6795 mA/mgPd. Furthermore, after a 2-hour chronoamperometric (CA) stability test, Pd-Sn/C exhibited remarkable stability compared to Pd/C (103 mA/mgPd), with Pd95-Sn5/C retaining the highest residual MA of 592 mA/mgPd. On the other hand, in FAOR, Pd95-Sn5/C demonstrates the highest MA of 3381 mA/mgPd in acid solution and maintains impressive stability even after a 2-hour CA stability test. The EOR and FAOR activities of Pd95-Sn5/C are both higher than those of Pd85-Sn15/C, further confirming the effect of adding trace amounts of Sn for improving electrochemical performance. This study proposes a modification of incorporating small amounts of Sn into Pd /C catalysts, which significantly enhances Pd utilization and improves the performance and stability of EOR and FAOR.
關鍵字(中) ★ 鈀
★ 錫
★ 二氧化錫
★ 雙金屬觸媒
★ 乙醇氧化反應
★ 甲酸氧化反應
★ 鈀-錫鍵結
關鍵字(英) ★ Pd
★ Sn
★ SnO2
★ bimetallic catalysts
★ ethanol oxidation reaction
★ formic acid oxidation reaction
★ Pd-Sn bonding.
論文目次 摘要 i
Abstract iii
Table of Contents vii
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 The Mechanism of EOR 2
1.2 The Mechanism of FAOR 5
1.3 The Modification of Pd-based Catalysts for EOR and FAOR
7
1.4 Motivation and Approach 11
Chapter 2 Experimental Section 12
2.1 Materials and Methods 12
2.1.1 Materials 12
2.1.2 Preparation of Pd-Sn/C 12
2.2 Materials Characterization 13
2.3 Electrochemical Measurements 14
Chapter 3 Results and Discussion 16
3.1 The Materials Characterizations 16
3.2 The Electrochemical Performance of Catalysts for EOR
26
3.2 The Electrochemical Performance of Catalysts for FAOR
33
Chapter 4 Conclusions 39
References 41
參考文獻 1. Gao, Q., Mou, T., Liu, S., Johnson, G., Han, X., Yan, Z., Ji, M., He, Q., Zhang, S., Xin, H., Zhu, H., Monodisperse PdSn/SnOx core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. J. Mater. Chem. A 2020, 8, 20931-20938.
2. Yang, X., Liang, Z., Chen, S., Ma, M., Wang, Q., Tong, X., Zhang, Q., Ye, J., Gu, L., Yang, N., A Phosphorus-Doped Ag@Pd Catalyst for Enhanced C-C Bond Cleavage during Ethanol Electrooxidation. Small 2020, 16, e2004727.
3. Guo, Y., Li, B., Shen, S., Luo, L., Wang, G., Zhang, J., Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium. ACS Appl. Mater. Interfaces 2021, 13, 16602-16610.
4. Wang, X., Zhang, C., Chi, M., Wei, M., Dong, X., Zhu, A., Zhang, Q., Liu, Q., Two-dimensional PdSn/TiO2-GO towards ethanol electrooxidation catalyst with high stability. Int. J. Hydrog. Energy 2021, 46, 19129-19139.
5. Zheng, Y., Wan, X., Cheng, X., Cheng, K., Dai, Z., Liu, Z., Advanced Catalytic Materials for Ethanol Oxidation in Direct Ethanol Fuel Cells. Catal. 2020, 10, 166.
6. Zhang, L. Y., Zhao, Z. L., Li, C. M., Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electocatalytic activity and stability toward formic acid oxidation. Nano Energy 2015, 11, 71-77.
7. Ali, H., Kanodarwala, F. K., Majeed, I., Stride, J. A., Nadeem, M. A., La2O3 Promoted Pd/rGO electro-catalysts for formic acid oxidation. ACS Appl. Mater. Interfaces 2016, 8, 32581-32590.
8. Xi, Z., Erdosy, D. P., Mendoza-Garcia, A., Duchesne, P. N., Li, J., Muzzio, M., Li, Q., Zhang, P., Sun, S., Pd nanoparticles coupled to WO2. 72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 2017, 17, 2727-2731.
9. Fan, X., Yuan, W., Zhang, D. H., Li, C. M., Heteropolyacid-mediated self-assembly of heteropolyacid-modified pristine graphene supported Pd nanoflowers for superior catalytic performance toward formic acid oxidation. ACS Appl. Energy Mater. 2018, 1, 411-420.
10. Yaqoob, L., Noor, T., Iqbal, N., A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction. RSC Adv. 2021, 11, 16768-16804.
11. Sankar, S., Anilkumar, G. M., Tamaki, T., Yamaguchi, T., Cobalt-modified palladium bimetallic catalyst: a multifunctional electrocatalyst with enhanced efficiency and stability toward the oxidation of ethanol and formate in alkaline medium. ACS Appl. Energy Mater. 2018, 1, 4140-4149.
12. Yang, Y., Tian, M., Li, Q., Min, Y., Xu, Q., Chen, S., Ethanol Electrooxidation Catalyzed by Tungsten Core@Palladium Shell Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 30968-30976.
13. Makin Adam, A. M., Zhu, A., Ning, L., Deng, M., Zhang, Q., Liu, Q., Carbon supported PdSn nanocatalysts with enhanced performance for ethanol electrooxidation in alkaline medium. Int. J. Hydrog. Energy 2019, 44, 20368-20378.
14. Ning, L., Liu, X., Deng, M., Huang, Z., Zhu, A., Zhang, Q., Liu, Q., Palladium-based nanocatalysts anchored on CNT with high activity and durability for ethanol electro-oxidation. Electrochim. Acta 2019, 297, 206-214.
15. Yang, Y. Y., Ren, J., Li, Q. X., Zhou, Z. Y., Sun, S. G., Cai, W. B., Electrocatalysis of Ethanol on a Pd Electrode in Alkaline Media: An in Situ Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy Study. ACS Catal. 2014, 4, 798-803.
16. Dimos, M. M., Blanchard, G., Evaluating the role of Pt and Pd catalyst morphology on electrocatalytic methanol and ethanol oxidation. J. Phys. Chem. C 2010, 114, 6019-6026.
17. Xiao, X., Jeong, H., Song, J., Ahn, J. P., Kim, J., Yu, T., Facile synthesis of Pd@ Pt core–shell nanocubes with low Pt content via direct seed-mediated growth and their enhanced activity for formic acid oxidation. ChemComm 2019, 55, 11952-11955.
18. Torrero, J., Montiel, M., Peña, M. A., Ocón, P., Rojas, S., Insights on the electrooxidation of ethanol with Pd-based catalysts in alkaline electrolyte. Int. J. Hydrog. Energy 2019, 44, 31995-32002.
19. Xu, J., Yuan, D., Yang, F., Mei, D., Zhang, Z., Chen, Y. X., On the mechanism of the direct pathway for formic acid oxidation at a Pt (111) electrode. Phys. Chem. Chem. Phys. 2013, 15, 4367-4376.
20. Al Najjar, T., Ahmed, N., El Sawy, E. N., Mechanistic effects of blending formic acid with ethanol on Pd activity towards formic acid oxidation in acidic media. RSC Adv. 2021, 11, 22842-22848.
21. Lyu, F., Cao, M., Mahsud, A., Zhang, Q., Interfacial engineering of noble metals for electrocatalytic methanol and ethanol oxidation. J. Mater. Chem. A 2020, 8, 15445-15457.
22. Cuesta, A., Cabello, G., Osawa, M., Gutiérrez, C., Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2012, 2, 728-738.
23. Yang, X., Wang, Q., Qing, S., Gao, Z., Tong, X., Yang, N., Modulating Electronic Structure of an Au‐Nanorod‐Core–PdPt‐Alloy‐Shell Catalyst for Efficient Alcohol Electro‐Oxidation. Adv. Energy Mater. 2021, 11, 2100812.
24. Gao, W., Keith, J. A., Anton, J., Jacob, T., Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt (111). J. Am. Chem. Soc. 2010, 132, 18377-18385.
25. Bianchini, C., Shen, P. K., Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev. 2009, 109, 4183-4206.
26. Chen, A., Ostrom, C., Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications. Chem. Rev. 2015, 115, 11999-12044.
27. Dodekatos, G., Schünemann, S., Tüysüz, H., Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catal. 2018, 8, 6301-6333.
28. Lee, H., Habas, S. E., Somorjai, G. A., Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J. Am. Chem. Soc. 2008, 130, 5406-5407.
29. Mazumder, V., Sun, S., Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588-4589.
30. Suo, Y., Guo, Y., Rong, C., Zhang, Z., Hu, G., Synthesis of highly active Pt-Pd-Cu/C catalysts for formic acid oxidation. Int. J. Electrochem. Sci. 2017, 12, 3561-3575.
31. Fan, J., Du, H., Zhao, Y., Wang, Q., Liu, Y., Li, D., Feng, J., Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catal. 2020, 10, 13560-13583.
32. Mao, H., Wang, L., Zhu, P., Xu, Q., Li, Q., Carbon-supported PdSn–SnO2 catalyst for ethanol electro-oxidation in alkaline media. Int. J. Hydrog. Energy 2014, 39, 17583-17588.
33. Zhu, F., Wang, M., He, Y., Ma, G., Zhang, Z., Wang, X., A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 2014, 148, 291-301.
34. Feng, Y., Bin, D., Zhang, K., Ren, F., Wang, J., Du, Y., One-step synthesis of nitrogen-doped graphene supported PdSn bimetallic catalysts for ethanol oxidation in alkaline media. RSC Adv. 2016, 6, 19314-19321.
35. Shen, C., Chen, H., Qiu, M., Shi, Y., Yan, W., Jiang, Q., Jiang, Y., Xie, Z., Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation. J. Mater. Chem. A 2022, 10, 1735-1741.
36. Rettenmaier, C., Aran Ais, R. M., Timoshenko, J., Rizo, R., Jeon, H. S., Kuhl, S., Chee, S. W., Bergmann, A., Roldan Cuenya, B., Enhanced Formic Acid Oxidation over SnO2-decorated Pd Nanocubes. ACS Catal. 2020, 10, 14540-14551.
37. Luo, Z., Lu, J., Flox, C., Nafria, R., Genç, A., Arbiol, J., Llorca, J., Ibáñez, M., Morante, J. R., Cabot, A., Pd2Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. J. Mater. Chem. A 2016, 4, 16706-16713.
38. Park, J. W., Park, C. M., A fundamental understanding of Li insertion/extraction behaviors in SnO and SnO2. J. Electrochem. Soc. 2015, 162, A2811.
39. Bhalothia, D., Huang, T. H., Chang, C. W., Lin, T. H., Wu, S. C., Wang, K. W., Chen, T. Y., High-Performance and Stable Hydrogen Evolution Reaction Achieved by Pt Trimer Decoration on Ultralow-Metal Loading Bimetallic PtPd Nanocatalysts. ACS Appl. Energy Mater. 2020, 3, 11142-11152.
40. Huang, T. H., Bhalothia, D., Dai, S., Yan, C., Wang, K. W., Chen, T. Y., Bifunctional Pt–SnOx nanorods for enhanced oxygen reduction and hydrogen evolution reactions. Sustain. Energy Fuels 2021, 5, 2960-2971.
41. Cheng, M., Bhalothia, D., Yeh, W., Beniwal, A., Yan, C., Wang, K. W., Chen, P. C., Tu, X., Chen, T. Y., Optimization of SnPd Shell Configuration to Boost ORR Performance of Pt-Clusters Decorated CoOx@SnPd Core-Shell Nanocatalyst. Catal. 2022, 12, 1411.
42. Yan, C., Bhalothia, D., Yang, S. S., Beniwal, A., Chang, Y. X., Wang, P. C., Cheng, Y. C., Chen, C. L., Wu, S. C., Chen, T. Y., Hybrid Composite of Subnanometer CoPd Cluster-Decorated Cobalt Oxide-Supported Pd Nanoparticles Give Outstanding CO Production Yield in CO2 Reduction Reaction. Catal. 2022, 12, 1127.
43. Zhou, M., Liu, J., Ling, C., Ge, Y., Chen, B., Tan, C., Fan, Z., Huang, J., Chen, J., Liu, Z., Huang, Z., Ge, J., Cheng, H., Chen, Y., Dai, L., Yin, P., Zhang, X., Yun, Q., Wang, J., Zhang, H., Synthesis of Pd3Sn and PdCuSn Nanorods with L12 Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. Adv. Mater. 2022, 34, e2106115.
44. Liu, D., Tian, S., Zhang, Y., Hu, C., Liu, H., Chen, D., Xu, L., Yang, J., Ultrafine SnPd Nanoalloys Promise High-Efficiency Electrocatalysis for Ethanol Oxidation and Oxygen Reduction. ACS Appl. Energy Mater. 2023, 6, 1459-1466.
45. Yang, L., Gao, F., Xu, L., Fu, B., Zheng, Y., Guo, P., Bimetallic Face-Centered Cubic Pd–Ag Nano-dendritic Alloys Catalysts Boost Ethanol Electrooxidation. ACS Appl. Energy Mater. 2022, 5, 11624-11631.
46. Wang, H., Zheng, H., Ling, L., Fang, Q., Jiao, L., Zheng, L., Qin, Y., Luo, Z., Gu, W., Song, W., Pd Metallene Aerogels with Single-Atom W Doping for Selective Ethanol Oxidation. ACS Nano 2022, 16, 21266-21274.
47. Liu, C., Shen, Y., Zhang, J., Li, G., Zheng, X., Han, X., Xu, L., Zhu, S., Chen, Y., Deng, Y., Hu, W., Multiple Twin Boundary‐Regulated Metastable Pd for Ethanol Oxidation Reaction. Adv. Energy Mater. 2022, 12.
48. Huang, J., Ji, L., Li, X., Wu, X., Qian, N., Li, J., Yan, Y., Yang, D., Zhang, H., Facile synthesis of PdSn alloy octopods through the Stranski–Krastanov growth mechanism as electrocatalysts towards the ethanol oxidation reaction. CrystEngComm 2022, 24, 3230-3238.
49. Chen, D. P., Yuan, L., Li, M. J., Han, W. J., Liu, X. D., Liu, X. C., Wang, C. Y., Pd Monolayer on the 3D-Hollow-Porous Au Microsphere as an Advanced Electrocatalyst for the Ethanol Oxidation Reaction. ACS Appl. Energy Mater. 2022, 5, 5087-5098.
50. Cao, Z., Lao, X., Gao, F., Yang, M., Sun, J., Liu, X., Su, R., Chen, J., Guo, P., Improvement of electrocatalytic alcohol oxidation by tuning the phase structure of atomically ordered intermetallic Pd-Sn nanowire networks. Sci. China Mater. 2022, 65, 2694-2703.
51. Ye, N., Zhao, P., Qi, X., Sheng, W., Jiang, Z., Fang, T., Ethanol electro-oxidation on the PdSn-TaN/C catalyst in alkaline media: Making TaN capable of splitting C C bond. Appl. Catal. B 2022, 314.
52. You, H., Gao, F., Wang, C., Li, J., Zhang, K., Zhang, Y., Du, Y., Rich grain boundaries endow networked PdSn nanowires with superior catalytic properties for alcohol oxidation. Nanoscale 2021, 13, 17939-17944.
53. Qu, T., Tan, Q., Liu, L., Guo, S., Li, S., Liu, Y., Polymer fiber membrane-based direct ethanol fuel cell with Ni-doped SnO2 promoted Pd/C catalyst. Catalysis Science & Technology 2020, 10, 4099-4108.
54. Shi, Y., Schimmenti, R., Zhu, S., Venkatraman, K., Chen, R., Chi, M., Shao, M., Mavrikakis, M., Xia, Y., Solution-phase synthesis of PdH0. 706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556-2568.
55. Lu, X., Wang, Z., Yang, Y., Liao, S., Lu, X., Heterostructured Pd/Ti/Pd Thin Films as Highly Efficient Catalysts for Methanol and Formic Acid Oxidation. ACS Appl. Mater. Interfaces 2021, 13, 31725-31732.
56. Wang, H., Liu, Z., Ma, Y., Julian, K., Ji, S., Linkov, V., Wang, R., Synthesis of carbon-supported PdSn–SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Phys. Chem. Chem. Phys. 2013, 15, 13999-14005.
57. Fang, Z., Chen, W., Recent advances in formic acid electro-oxidation: from the fundamental mechanism to electrocatalysts. Nanoscale Adv. 2021, 3, 94-105.
58. Liu, Z., Zhang, X., Carbon-supported PdSn nanoparticles as catalysts for formic acid oxidation. Electrochem commun 2009, 11, 1667-1670.
59. Shen, T., Zhang, J., Chen, K., Deng, S., Wang, D., Recent Progress of Palladium-Based Electrocatalysts for the Formic Acid Oxidation Reaction. Energy Fuels 2020, 34, 9137-9153.
60. Chen, D., Pei, S., He, Z., Shao, H., Wang, J., Wang, K., Wang, Y., Jin, Y., High active PdSn binary alloyed catalysts supported on B and N codoped graphene for formic acid electro-oxidation. Catal. 2020, 10, 751.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明