博碩士論文 109226011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.139.86.160
姓名 張庭愷(Ting-Kai Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 電荷阻擋層對有機光偵測器性能之影響
(The impact of charge blocking layers on the performance of organic photodetectors)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-15以後開放)
摘要(中) 有機光偵測器在光電轉換應用中雖然具有無窮潛力,但是目前大多數有機光電偵測器因為考量激子的拆解效率而使用本體異質結面 (bulk heterojunction)結構作為吸光主動層,但會導致較高的暗電流,而光偵測器的暗電流會影響元件之性能。因此,本研究引入阻擋層的概念,目的在於提升有機光偵測器的性能,實現低暗電流和高光電流的元件設計。實驗選用Poly(3-hexylthiophene)(P3HT)及[6,6]-phenyl-C61-butyric acid methyl ester(PCBM)作為元件的主動層,並研究使用五種不同的阻擋層,並對結果進行分析和討論。
首先,研究加入絕緣材料HfO2,結果證實有機光偵測器能夠達到降低暗電流效果,但無法提升光電流。接下來研究以氧化鋅前驅物生長之氧化鋅薄膜(Zinc oxide,ZnO)做為阻擋層,實驗結果發現薄膜厚度不同會導致元件性能有明顯差異。進一步利用市售功函數(Work function)4.3 eV和3.9 eV的ZnO墨水旋塗成膜作為阻擋層,發現加入高功函數的ZnO能有效抑制光偵測器的暗電流。而加入低功函數的ZnO則大幅增加暗電流和光電流。透過不同功函數的元件差異也展現ZnO功函數會影響元件的性能表現。最後,將兩種功函數ZnO墨水以適當比例混和,成功使有機光電偵測器能同時降低暗電流並提高光電流。在-1 V偏壓下,該元件的響應度達到0.62 A/W,偵測度為 1.84×10^12 Jones,外部量子效率為146.9 %,上升時間為16.5 µs和下降時間為106.5 µs。
摘要(英) Organic photodetectors hold immense potential for convert light energy into electrical energy applications. However, most organic photodetectors use bulk heterojunction structures as their photoactive layers to increase exciton dissociation efficiency, but this can result in a high dark current, consequently impacting the device′s performance. To address this issue, this study introduces the concept of charge-blocking layers to enhance the performance of organic photodetectors, aiming to achieve low dark current and high photocurrent in the device design. The experiments employed Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the active layer materials and analyzed the results using five different blocking layers.
Firstly, the addition of the insulating material hafnium oxide (HfO2) confirmed the expected reduction in the dark current due to charge blocking effect, but the photocurrent was not increased. Subsequently, the zinc oxide (ZnO) blocking layer prepared by the precursor was investigated, revealing that different ZnO thicknesses would result in significant variations in device performances. Additionally, the commercially available ZnO inks with work functions of 4.3 eV and 3.9 eV were used as the blocking layers. It was found that the higher work function ZnO effectively suppressed the dark current of the photodetector. In contrast, adding lower work function ZnO led to a substantial increase in both dark and photocurrents. The differences observed in the devices with different work functions also indicate that the work function of ZnO affects the performance of the device.. Finally, by blending two types of ZnO inks with different work functions at an appropriate ratio, the organic photodetector can successfully achieve the reduced dark current and increased photocurrent, resulting in an overall performance improvement. At a -1V bias voltage, the optimal device demonstrated a responsivity of 0.62 A/W, detectivity of 1.84×10^12 Jones, and EQE of 146.9 %. The rise time of 16.5 µs and fall time of 106.5 µs.
關鍵字(中) ★ 光偵測器
★ 有機
★ 電荷阻擋層
關鍵字(英) ★ photodetector
★ organic
★ charge blocking layer
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ixi
第一章 緒論 1
1-1 前言 1
1-2 有機光電偵測器研究背景 3
1-3 研究動機 4
1-4 論文章節架構 8
第二章 基本原理 9
2-1 有機光偵測器工作原理 9
2-2 有機光偵測器加入阻擋層原理 12
2-3 偵測器基本特性參數 13
第三章 實驗方法與架構 17
3-1 實驗材料介紹 17
3-1-1 有機主動層材料 18
3-1-2 阻擋層材料 19
3-2 實驗儀器 21
3-2-1 手套箱(Glove Box) 21
3-2-2 熱蒸鍍機(Thermal Evaporation Coater) 21
3-2-3 原子層沉積(Atomic Layer Deposition, ALD) 23
3-2-4 紫外光臭氧清潔機(UV-Ozone) 24
3-2-5 阻抗分析儀(Impedance Analyzer) 25
3-2-6 旋轉塗佈機(Spin Coater) 25
3-2-7 半導體參數分析儀(Semiconductor Parameter Analyzer) 26
3-2-8 發光二極體(Light-Emitting Diode) 27
3-2-9 數位式示波器(Digital Oscilloscope) 27
3-2-10 UV-VIS-NIR分光光譜儀 28
3-3 有機光偵測器實驗方法及製程 29
第四章 結果與討論 32
4-1 P3HT:PCBM有機光偵測器 32
4-1-1 P3HT:PCBM光學性質 34
4-1-2 改變有機半導體層厚度量測結果 35
4-2加入HfO2阻擋層對元件之影響 38
4-2-1 HfO2光學性質 38
4-2-2加入HfO2阻擋層結果 39
4-3加入ZnO.ac阻擋層對元件之影響 43
4-3-1 ZnO.ac光學性質 43
4-3-2加入ZnO.ac阻擋層結果 44
4-4 加入ZnO.np阻擋層對元件之影響 48
4-4-1 ZnO.np光學性質 49
4-4-2加入4.3 eV ZnO.np阻擋層結果 50
4-4-3加入3.9 eV ZnO.np阻擋層結果 54
4-4-4加入3.9 eV混和4.3 eV ZnO.np阻擋層結果 58
第五章 結論與未來展望 64
參考文獻 [1] S. Feruglio, G.-N. Lu, P. Garda, and G. Vasilescu, "A review of the CMOS buried double junction (BDJ) photodetector and its applications," Sensors, vol. 8, no. 10, pp. 6566-6594, 2008.
[2] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, "Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nature nanotechnology, vol. 9, no. 10, pp. 780-793, 2014.
[3] J. Liu, Y. Wang, H. Wen, Q. Bao, L. Shen, and L. Ding, "Organic photodetectors: materials, structures, and challenges," Solar Rrl, vol. 4, no. 7, p. 2000139, 2020.
[4] H. L. Tam, W. H. Choi, and F. Zhu, "Organic optical sensor based on monolithic integration of organic electronic devices," Electronics, vol. 4, no. 3, pp. 623-632, 2015.
[5] M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, "State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths," Laser & Photonics Reviews, vol. 10, no. 6, pp. 895-921, 2016.
[6] S. O. Kelley, C. A. Mirkin, D. R. Walt, R. F. Ismagilov, M. Toner, and E. H. Sargent, "Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering," Nature nanotechnology, vol. 9, no. 12, pp. 969-980, 2014.
[7] P. Luo, Z. Ghassemlooy, H. Le Minh, E. Bentley, A. Burton, and X. Tang, "Fundamental analysis of a car to car visible light communication system," in 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), 2014: IEEE, pp. 1011-1016.
[8] X. Xu et al., "A real‐time wearable UV‐radiation monitor based on a high‐performance p‐CuZnS/n‐TiO2 photodetector," Advanced Materials, vol. 30, no. 43, p. 1803165, 2018.
[9] R. D. Jansen‐van Vuuren, A. Armin, A. K. Pandey, P. L. Burn, and P. Meredith, "Organic photodiodes: the future of full color detection and image sensing," Advanced Materials, vol. 28, no. 24, pp. 4766-4802, 2016.
[10] Y. L. Wu, K. Fukuda, T. Yokota, and T. Someya, "A highly responsive organic image sensor based on a two‐terminal organic photodetector with photomultiplication," Advanced Materials, vol. 31, no. 43, p. 1903687, 2019.
[11] W. Yang, J. Chen, Y. Zhang, Y. Zhang, J. H. He, and X. Fang, "Silicon‐compatible photodetectors: trends to monolithically integrate photosensors with chip technology," Advanced Functional Materials, vol. 29, no. 18, p. 1808182, 2019.
[12] W. Ouyang, F. Teng, J. H. He, and X. Fang, "Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge‐carrier engineering," Advanced Functional Materials, vol. 29, no. 9, p. 1807672, 2019.
[13] K. Kudo and T. Moriizumi, "Spectrum‐controllable color sensors using organic dyes," Applied Physics Letters, vol. 39, no. 8, pp. 609-611, 1981.
[14] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science, vol. 258, no. 5087, pp. 1474-1476, 1992.
[16] S. Morita, A. A. Zakhidov, and K. Yoshino, "Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene," Solid state communications, vol. 82, no. 4, pp. 249-252, 1992.
[17] N. S. Sariciftci et al., "Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells," Applied physics letters, vol. 62, no. 6, pp. 585-587, 1993.
[18] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, vol. 270, no. 5243, pp. 1789-1791, 1995.
[19] J. Halls et al., "Efficient photodiodes from interpenetrating polymer networks," Nature, vol. 376, pp. 498-500, 1995.
[20] P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," Journal of Applied Physics, vol. 93, no. 7, pp. 3693-3723, 2003.
[21] X. Gong et al., "High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm," Science, vol. 325, no. 5948, pp. 1665-1667, 2009.
[22] G. Qian and Z. Y. Wang, "Near‐infrared organic compounds and emerging applications," Chemistry–An Asian Journal, vol. 5, no. 5, pp. 1006-1029, 2010.
[23] H. Dong, H. Zhu, Q. Meng, X. Gong, and W. Hu, "Organic photoresponse materials and devices," Chemical Society Reviews, vol. 41, no. 5, pp. 1754-1808, 2012.
[24] K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, "Organic light detectors: photodiodes and phototransistors," Advanced materials, vol. 25, no. 31, pp. 4267-4295, 2013.
[25] E. Manna, T. Xiao, J. Shinar, and R. Shinar, "Organic photodetectors in analytical applications," Electronics, vol. 4, no. 3, pp. 688-722, 2015.
[26] F. P. García de Arquer, A. Armin, P. Meredith, and E. H. Sargent, "Solution-processed semiconductors for next-generation photodetectors," Nature Reviews Materials, vol. 2, no. 3, pp. 1-17, 2017.
[27] S. T. Han et al., "An overview of the development of flexible sensors," Advanced materials, vol. 29, no. 33, p. 1700375, 2017.
[28] D. Yang and D. Ma, "Development of organic semiconductor photodetectors: from mechanism to applications," Advanced optical materials, vol. 7, no. 1, p. 1800522, 2019.
[29] H. Ren, J. D. Chen, Y. Q. Li, and J. X. Tang, "Recent progress in organic photodetectors and their applications," Advanced Science, vol. 8, no. 1, p. 2002418, 2021.
[30] S. Shafian, Y. Jang, and K. Kim, "Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer," Optics Express, vol. 23, no. 15, pp. A936-A946, 2015.
[31] D. Yang, X. Zhou, and D. Ma, "Fast response organic photodetectors with high detectivity based on rubrene and C60," Organic Electronics, vol. 14, no. 11, pp. 3019-3023, 2013.
[32] P. Peumans, V. Bulović, and S. Forrest, "Efficient, high-bandwidth organic multilayer photodetectors," Applied Physics Letters, vol. 76, no. 26, pp. 3855-3857, 2000.
[33] D. Troadec, G. Veriot, and A. Moliton, "Blue light emitting diodes with bathocuproine layer," Synthetic metals, vol. 127, no. 1-3, pp. 165-168, 2002.
[34] J. M. Melancon and S. R. Živanović, "Broadband gain in poly (3-hexylthiophene): phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer," Applied Physics Letters, vol. 105, no. 16, 2014.
[35] Y. Wang et al., "Sensitive, fast, stable, and broadband polymer photodetector with introducing TiO2 nanocrystal trap states," Organic Electronics, vol. 59, pp. 63-68, 2018.
[36] Y. Wang et al., "High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode," Optics Express, vol. 25, no. 7, pp. 7719-7729, 2017.
[37] R. Deng et al., "High‐Performance Polymer Photodetector Using the Non‐Thermal‐and‐Non‐Ultraviolet–Ozone‐Treated SnO2 Interfacial Layer," physica status solidi (RRL)–Rapid Research Letters, vol. 14, no. 3, p. 1900531, 2020.
[38] T. M. Clarke and J. R. Durrant, "Charge photogeneration in organic solar cells," Chemical reviews, vol. 110, no. 11, pp. 6736-6767, 2010.
[39] J.-L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, "Molecular understanding of organic solar cells: the challenges," Accounts of chemical research, vol. 42, no. 11, pp. 1691-1699, 2009.
[40] S. M. Menke and R. J. Holmes, "Exciton diffusion in organic photovoltaic cells," Energy & Environmental Science, vol. 7, no. 2, pp. 499-512, 2014.
[41] M. T. Sajjad, A. Ruseckas, and I. D. Samuel, "Enhancing exciton diffusion length provides new opportunities for organic photovoltaics," Matter, vol. 3, no. 2, pp. 341-354, 2020.
[42] Z. Zhao, C. Xu, L. Niu, X. Zhang, and F. Zhang, "Recent progress on broadband organic photodetectors and their applications," Laser & Photonics Reviews, vol. 14, no. 11, p. 2000262, 2020.
[43] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[44] S. Tomer, J. Panigrahi, R. Srivastava, and C. Rauthan, "Importance of precursor delivery mechanism for Tetra-kis-ethylmethylaminohafnium/water atomic layer deposition process," Thin Solid Films, vol. 692, p. 137629, 2019.
[45] N. Grossiord, P. de Bruyn, R. Andriessen, and P. W. Blom, "Characterization of precursor-based ZnO transport layers in inverted polymer solar cells," Journal of Materials Chemistry C, vol. 2, no. 41, pp. 8761-8767, 2014.
[46] G. Li et al., "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature materials, vol. 4, no. 11, pp. 864-868, 2005.
[47] S. Cho et al., "Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells," Scientific reports, vol. 4, no. 1, p. 4306, 2014.
[48] B. Chen et al., "Effects of bulk and interfacial charge accumulation on fill factor in organic solar cells," Applied Physics Letters, vol. 102, no. 19, 2013.
[49] D. Chi et al., "Ultra-thin ZnO film as an electron transport layer for realizing the high efficiency of organic solar cells," RSC advances, vol. 7, no. 24, pp. 14694-14700, 2017.
[50] X. Zhou, D. Yang, D. Ma, A. Vadim, T. Ahamad, and S. M. Alshehri, "Ultrahigh gain polymer photodetectors with spectral response from UV to near‐infrared using ZnO nanoparticles as anode interfacial layer," Advanced Functional Materials, vol. 26, no. 36, pp. 6619-6626, 2016.
[51] H. Lee, I. Park, J. Kwak, D. Y. Yoon, and C. Lee, "Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles," Applied Physics Letters, vol. 96, no. 15, 2010.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明