博碩士論文 110232001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:18.225.195.163
姓名 陳政瑜(Jheng-Yu Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 曝光機照明光型擴展之研究
(Study of Expansion of Illumination Light Pattern of Mask Aligner)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本論文利用UVLED光源結合複眼透鏡和聚光透鏡的設計,實現環保且高均勻度的曝光機光型。隨著科技的持續發展,在PCB製造中,考慮到曝光尺寸的不同,我們提出了一種不需要大量工程改造的光型疊加方法,通過光型的疊加來增加曝光面積的尺寸,以達到所需的尺寸大小。這樣的方法可以有效且快速地滿足生產需求並降低設備成本。
總結以上,本論文提出一種以光型疊加方式增加曝光面積尺寸的方法,並討論再疊加後曝光光型的有效面積和均勻度的影響。同時,介紹利用UVLED光源結合複眼透鏡和聚光透鏡打造高均勻度的曝光機光型的設計。
摘要(英) This paper proposes an environmentally friendly and highly uniform exposure machine light pattern by utilizing UVLED light sources combined with compound eye lenses and condenser lenses. With the continuous advancement of technology in PCB manufacturing, considering the varying exposure sizes, we present an overlay method for light patterns that does not require extensive engineering modifications. By overlaying light patterns, the exposure area size can be increased to meet the desired dimensions without the need for significant alterations. This approach effectively and rapidly fulfills production requirements while reducing equipment costs.
In summary, this paper introduces a method to increase the exposure area size through light pattern overlay and discusses the impact on the effective area and uniformity of the exposure light pattern after overlaying. Additionally, it presents the design of a highly uniform exposure machine light pattern achieved by combining UVLED light sources with compound eye lenses and condenser lenses.
關鍵字(中) ★ 曝光機
★ 曝光面積
★ 光型疊加
★ 有效面積
★ 均勻度
關鍵字(英) ★ exposure machine
★ exposure area
★ light pattern overlap
★ effective area
★ uniformity
論文目次 摘要....I
Abstract....II
目錄....V
圖目錄....VIII
表目錄....XI
第一章 緒論....1
1-1 研究背景....1
1-2 研究動機與目的....4
1-3 論文大綱....5
第二章 基礎原理....7
2-1 幾何光學(Geometrical Optics)....7
2-1-1 高斯成像公式....9
2-1-2 造鏡者公式....10
2-1-3 厚透鏡公式....12
2-2 輻射學與光度學....13
2-2-1 輻射通量Φ....16
2-2-2 照度E (Irradiance)....16
2-2-3 輻射強度I (Radiant Intensity)....17
2-2-4 輝度L (Radiance)....18
2-3 像差介紹....19
2-3-1 波面像差....21
2-3-2 畸變像差(distortion)....23
2-4 複眼透鏡(Fly Eye′s Lens)....24
2-5 均勻度檢測....25
第三章 光學模擬與設計....29
3-1 初階光學設計....29
3-2 光源元件選擇....36
3-3 聚光透鏡分析....37
3-4 複眼透鏡單位透鏡之分析....40
3-5 曝光系統模擬結果統整....45
第四章 曝光機系統之實驗與模擬驗證....47
4-1 曝光機系統光學元件以及實驗架構....48
4-2 不同成像位置下模擬與實驗結果比較....52
4-3 實驗結果與討論....53
第五章 結論....57
參考文獻....58
中英名詞對照表....64
參考文獻 [1] R. Karlicek, C. C. Sun, G. Zissis, and R. Ma, Handbook of advanced lighting technology (Springer, Switzerland, 2017).
[2] E. D. Kurniawan, M. Riswan, M. S. A. A. Ba’id, P. L. Gareso, and R. V. Manurung, “Development of uniform ultraviolet light source using light-emitting diode (LED) array for photolithography system with controllable exposure dose and duration,” presented at Int. Conf. Radar Antenna Microw. Electron. Telecommun (ICRAMET), Tangerang, Indonesia, 23-24 October 2019.
[3] A. Koric, P. Zenzerovic, and M. Vrankic, “UV Exposure Unit for PCB Prototyping,” DAAAM Symposium 23, 2304-1382 (2012).
[4] E. Archier, S. Devaux, E. Castela, A. Gallini, F. Aubin, M. L. Maître, S. Aractingi, H. Bachelez, B. Cribier, P. Joly, D. Jullien, L. Misery, C. Paul, J.-P. Ortonne, and M.-A. Richard, “Efficacy of psoralen UV-A therapy vs. narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review,” J. EADV. 3, 11-21 (2012).
[5] B. H. Xiao, Y. Wu, Y. Sun, H. D. Chen, and X. H. Gao, “Treatment of vitiligo with NB-UVB: A systematic review,” J. Dermatolog Treat. 26, 340-346 (2015).
[6] E. Myers, S. Kheradmand, and R. Miller, “An Update on Narrowband Ultraviolet B Therapy for the Treatment of Skin Diseases,” Cureus. 13, 19182 (2021).
[7] S. E. Beck, H. B. Wright, T. M. Hargy, T. C. Larason, and K. G. Linden, “Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems,” Water Res. 70, 27-37 (2015).
[8] LEDinside, “2023深紫外線 LED 市場趨勢與產品分析- 蓄勢翱翔,” https://www.ledinside.com.tw/research/20230331-38592.html.
[9] N. Pongprasert, Y. Sekozawa, S. Sugaya, and H. Gemma, “A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel,” Sci. Horticulturae 130, 73-77 (2011).
[10] G. Q. Li, W. L. Wang, Z. Y. Huo, Y. Lu, and H. Y. Hu, “Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli,” Water Res. 126, 134-143 (2015).
[11] A. Thatiparthi, A. Martin, J. Liu, and J. J. Wu, “Home phototherapy during the COVID-19 pandemic,” Cutis. 107, 87-88 (2021).
[12] G. S. Spagnolo, L. Cozzella, and C. Simonetti, “Banknote security using a biometric-like technique: a hylemetric approach,” Meas. Sci. Technol. 21, 5 (2010).
[13] F. R. Zahi, S. J. Rizwi, S. K. Haq, and R. H. Khan, “Low dose mercury toxicity and human health,” Environ. Toxicol. Pharmacol. 20, 351-360 (2005).
[14] L. D. Hylanderand and M. E. Goodsite, “Environmental costs of mercury pollution,” Sci. Total Environ. 368, 352-370 (2006).
[15] R. Dabeka, A. D. Mckenzie, D. S. Forsyth, and H. B. Conacher, “Survey of total mercury in some edible fish and shellfish species collected in Canada in 2002,” Food Addit. Contam. 21, 434-440 (2004).
[16] 行政院環境保護署毒物及化學物質局, “汞水俣公約,” https://topic.epa.gov.tw/hg/cp-89-79-442c4-3.html.
[17] Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[18] Phoseon Technology, “了解紫外光LED波長,” https://phoseon.com/zh/in-the-news/understanding-ultraviolet-led-wavelength/.
[19] D. Zhao, S. Liu, Y. Wu, T. Guan, N. Sun, and B. Ren, “Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings,” Prog. Org. Coat. 133, 289-298 (2019).
[20] R. A. Meyers, Encyclopedia of Physical Science and Technology, 3rd eds. (Elsevier Science, Amsterdam, 2001).
[21] X. Zhong, J. Sheng, and H. Fu, “A novel UV/sunlight-curable anti-smudge coating system for various substrates,” Chem. Eng. J. 345, 659-668 (2018).
[22] C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, “Synthesis of nanocomposite polymers by UV-radiation curing,” Polym. 46, 6640-6648 (2005).
[23] C.-J. Dominika and P.-P. Barbara, “Progress in development of UV curable powder coatings,” Prog. Org. Coat. 158, 106355 (2021).
[24] A. Bertsch, S. Jiguet, and P. Renaud, “Microfabrication of ceramic components by microstereolithograph,” J. Micromechanics and Microengineering 14, 2 (2003).
[25] G. S. Wan, Q. Dong, X. C. Sun, M. G. Cheng, H. Zheng, Z. Y. Zhao, and Y. X. Jia, “Highly efficient and accurate algorithm for multiscale equivalent modeling and mechanical performance simulation of printed circuit boards,” Microelectron. Reliability 147, 115134 (2023).
[26] K. Kevin, W. Karl, T. Nicholas, S. Brandon, D. Casey, and M. Christopher, “Chemical inertness of UV-cured optical elastomers within the printed circuit board manufacturing process for embedded waveguide applications,” presented at SPIE OPTO, California, United States, 8 March 2014.
[27] A. Eshkeiti, A. S. G. Reddy, S. Emamian, B. B. Narakathu, M. Joyce, M. Joyce, and P. D. Fleming, “Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates,” IEEE Transactions on Components、Packaging and Manuf. Technol. 5, 415-421 (2015).
[28] P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” presented at SPIE, California, United States, 20 August 2005.
[29] R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968-20978 (2010).
[30] S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52, 125101 (2013).
[31] T. Chen, T. Wang, Z. Wang, T. C. Zuo, J. Wu, and S. B. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17, 9733-9747 (2009).
[32] C. C. Chiu and Y. C. Lee, “Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method,” Opt. Express 20, 5922-5935 (2012).
[33] X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377-381 (1986).
[34] Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56, 9308-9314 (2017).
[35] Y. Jin, A. Hassan, and Y. Jiang, “Freeform microlens array homogenizer for excimer laser beam shaping,” Opt. Express 24, 24846-24858 (2016).
[36] H. W. Lee and B. S. Lin, “Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array,” Opt. Express 20, A788-A798 (2012).
[37] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express 20, 6135-6145 (2012).
[38] F. Nikolajeff, S. Hård, and B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing,” Appl. Opt. 36, 8481-8489 (1997).
[39] T. R. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42, 109-120 (2003).
[40] F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15, 6218-6231 (2007).
[41] P. K. Chiu, D. Chiang, C. T. Lee, C. N. Hsiao, Z. H. Wu, and C. Y. Chen, “Development of high-performance parallel exposure I-line UV light source,” presented at Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 17-20 April 2016.
[42] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE Press, Washington, 1998).
[43] CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE Publication No. 86 (1988b).
[44] 大田登,色彩工程學:理論與應用,全華圖書股份有限公司,中華民國九十七年。
[45] C. C. Sun and T. X. Lee, Optical Design for LED Solid State Lighting - A guide (IOP Publishing, United Kingdom, 2022).
[46] D. L. Fried, “Statistics of a Geometric Representation of Wavefront Distortion,” J. Opt. Soc. Am. 3, 1427-1435 (1965).
[47] Y. Liu, D. W. Cheng, Q. C. Wang, Q. C. Hou, L. Gu, H. L. Chen, T. Yang, and Y. T. Wang, “Optical distortion correction considering radial and tangential distortion rates defined by optical design,” Res. Opt. 3, 100072 (2001).
[48] Virendra N. Mahajan,像差光學概論,五南圖書出版股份有限公司,中華民國一百零三年。
[49] American National Standards Institute (ANSI), American National Standard for Audiovisual Systems-Electronic Projection-Fixed Resolution Projectors, (American National Standards Institute, United States, 1997).
[50] Breault Research Organization, “ASAP,” http://www.breault.com/index.php.
[51] McNeel, “Rhinoceros 3D,” https://www.rhino3d.com/tw/.
[52] 林倖如,用於紫外光曝光系統之石英透鏡陣列設計與驗證,國立中央大學光電所碩士論文,中華民國一百一十年。
[53] 韓明媛,以RGBLED為投影顯示光源之光學性能研究,國立中央大學光電科學與工程研究所碩士論文,中華民國九十七年。
[54] 鄭佳申,白光LED之一階與二階光學設計,國立中央大學光電科學與工程研究所碩士論文,中華民國九十七年。
[55] R. W. L. Jiang and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10, 484-511 (2018).
[56] J. Bernasconi, T. Scharf, U. Vogler, and H. P. Herzig, “High-power modular LED-based illumination systems for mask-aligner lithography,” Opt. Express 26, 11503-11512 (2018).
[57] Gentec Electro-Optics, “MAESTRO,” https://www.gentec-eo.com/products/maestro.
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明