以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:138 、訪客IP:18.225.195.163
姓名 廖少豪(Shao-Hao Liao) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 利用軸對稱扭轉向列型液晶電控柱狀偏振光場
(Electrical modulation of cylindrically polarized light fields using axially symmetric twisted nematic liquid crystals)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2028-11-30以後開放) 摘要(中) 本論文探討在各參數符合具有高線偏振度連續電控線偏振旋轉特性的扭轉向列型液晶(Twisted nematic liquid crystal,簡稱TNLC)條件下,分別透過摩擦配向及光配向方法製做的Axially symmetric twisted nematic liquid crystal (ASTNLC)元件的光電特性。
第一部分中首先對摩擦配向的ASTNLC進行測試,此ASTNLC元件為使用聚乙烯基咔唑(poly(9-vinylcarbazole),簡稱 PVK)以及聚醯亞胺(polyimide,簡稱PI)當作配向膜所製成,藉由量測線偏振光以及方位角偏振光場入射元件後於檢偏片穿透軸在不同角度下的光強度分佈情形,透過史托克斯運算得到光場的偏振橢圓定向角分佈以及線偏振度分佈,以了解該液晶元件對光場的影響,再透過製作過程中所獲得的實際元件之參數以及液晶的物理參數,利用模擬的方式推算理論上元件的效能,並與實際結果相比較,最後分析使用此製程方式下,對於該液晶元件所可能造成的誤差。
第二部分中為對光配向製成的ASTNLC進行測試,此ASTNLC元件為使用偶氮染料甲基紅(methyl red,簡稱MR)以及燦爛黃(brilliant yellow,簡稱BY)當作配向力來源。分別對鍍於一片基板上的BY薄膜以及摻雜於液晶中的MR使用經偏振轉換元件調制後的不同波長光源進行兩步驟同側光配向,BY會在該基板表面形成同心圓配向,MR會吸附在未鍍有BY的基板表面形成放射狀配向,從形成ASTNLC元件,藉由量測線偏振光以及方位角偏振光場入射元件後的光強度分佈情形,使用史托克斯運算得到光場的偏振橢圓定向角分佈以及線偏振度分佈,以了解元件對光場的影響,並使用不同液晶層厚度的模擬結果分析元件的實際情況,最後分析使用此製程方式下對於元件所可能造成的誤差。摘要(英) In this thesis, we discuss the optoelectronic properties of axially symmetric twisted nematic liquid crystal (ASTNLC) devices fabricated by mechanical rubbing process and photo-alignment method under the conditions of electrically controlled polarization rotator with high output linear polarization rotation characteristics based on twisted nematic liquid crystal (TNLC) cells.
In the first part, the ASTNLC fabricated through the mechanical rubbing process is examined first. This ASTNLC device is made of two substrates, treated with poly(9-vinylcarbazole) (PVK) and polyimide (PI) as the two alignment films. By measuring the light intensity distribution of linearly polarized light and azimuthal symmetrically polarized light fields after passing through the ASTNLC device, the polarization elliptical orientation angle distribution and degree of linear polarization distribution of the light field are obtained through Stokes calculation to understand the effect of the ASTNLC device on the light field. Theoretically, the device performance is calculated through simulation using the actual device parameters obtained during the manufacturing process combined with the physical parameters of the liquid crystal, and then compared with the actual results. Finally, the errors, resulting from the device using this manufacturing process, are analyzed.
The second part is to test the ASTNLC made of photo-alignment technique. This ASTNLC element uses azo dyes methyl red (MR) and brilliant yellow (BY) as the photoalignment materials with suitable surface anchoring. For the BY film plated on a substrate and the MR doped in the liquid crystal, light sources of different wavelengths modulated by the polarization conversion element are used for two-step photo-alignment. BY will form a concentrically circular alignment on the surface of the substrate, and MR will adsorb on the surface of the other substrate to form a radial alignment, thereby forming an ASTNLC element. By measuring the light intensity distribution of linearly polarized light and azimuthally polarized light fields incident on the device, the polarization elliptical orientation angle distribution and the degree of linear polarization distribution of the light field are obtained by using Stokes calculations to understand the impact of the device on the light field. Then, the simulation results of different liquid crystal layer thicknesses are used to analyze the actual situation of the device. Finally, the errors, resulting from the device fabricated using this method, are also analyzed.關鍵字(中) ★ 液晶
★ 偏振轉換器
★ 柱狀光場關鍵字(英) ★ liquid crystals
★ polarization convertor
★ cylindrically polarized light論文目次 摘要 i
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
§ 1-1 前言 1
§ 1-2 研究動機 1
§ 1-3 文獻回顧 1
§ 1-4 論文架構 2
第二章 液晶簡介 4
§ 2-1 液晶的定義 4
§ 2-2液晶簡史[10] 4
§ 2-3液晶分類[12] 5
§ 2-3-1 向列型液晶(Nematics) 6
§ 2-3-2 層列型液晶(Smectics) 7
§ 2-3-3 膽固醇型液晶(Cholesterics,簡寫N*) 9
§ 2-4 液晶之特性 11
§ 2-4-1光學異向性(Optical anisotropy)[14] 11
§ 2-4-2介電異向性(Dielectric anisotropy) 16
§ 2-4-3連續彈性體理論(Continuum elasticity theory)[15] 17
§ 2-4-4溫度對向列型液晶之影響 18
第三章 實驗相關理論 20
§ 3-1光的偏振[16] 20
§ 3-1-1偏振的類型 22
§ 3-1-2偏振的矩陣運算 25
§ 3-1-3線偏振度(Degree of linear polarization, DoLP) 29
§ 3-1.4圓柱對稱向量光束(cylindrical vector beams)[5][17] 30
§ 3-2摩擦聚合物配向膜致水平配向法 31
§ 3-3基於光激發染料之液晶光配向法 32
§ 3-3.1光致異構化反應(photoisomerization)[19][20] 32
§ 3-3.2正力矩效應(Jánossy model)[21][22] 33
§ 3-3.3表面負力矩效應(Gibbons model)[23][24] 33
§ 3-3.4吸附效應(adsorption effect)[25][26] 34
§ 3-4扭轉向列型液晶(Twisted Nematic Liquid Crystal, TN-LCs)[27] 35
§ 3-4-1 Mauguin condition[28] 36
§ 3-4-2 Gooch-Tarry condition[29] 36
第四章 實驗方法及製程 39
§ 4-1實驗材料 39
§ 4-1.1正型向列型液晶 E7 39
§ 4-1.2偶氮染料(Azo dye) 40
§ 4-1.3配向膜材料 41
§ 4-2液晶盒製作 41
§ 4-3實驗架設與程式分析 46
§ 4-3-1液晶空盒厚度量測 46
§ 4-3-2利用偏光顯微鏡量測光經元件後不同偏振方向之光強度 48
§ 4-3-3使用MATLAB處理光強度圖 48
§ 4-3-4雙光源單向入射液晶盒之雙面光配向 49
第五章 結果與討論 51
§ 5-1利用PVK膜及PI膜製做符合高DoLP轉換的ASTNLC元件 51
§ 5-1-1在線偏振光源下ASTNLC元件的整體光電特性 52
§ 5-1-2以磨擦配向所製做之ASTNLC元件調制方位角偏振光源 60
§ 5-2利用偶氮染料單向光配向方式製做ASTNLC元件及其光電特性研究 67
§ 5-2-1在線偏振光源下光配向所製成之ASTNLC元件的整體光電特性 68
§ 5-2-2以光配向所製做之ASTNLC元件調制方位角偏振光源 76
第六章 結論與未來展望 83
§ 6-1 結論 83
§ 6-2 未來展望 84
參考文獻 86參考文獻 [1] Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5, 111-143 (2017).
[2] W. Doane, A. Golemme, J. L. West, J. B. Whitehead Jr., and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511-532 (2007).
[3] W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst 429, 101-110 (2005).
[4] D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. D’Alessandro, “A Switchable Liquid-Crystal Optical Channel Waveguide on Silicon,” IEEE J. Quant. Electron. 46, 762-768 (2010).
[5] M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996).
[6] K.-T. Cheng, Y.-X. Liu, C.-T. Huang, C.-K. Liu, “Continuously Electronically Controlled Linear Polarization Rotator,” US Patent, Patent No. US 11,586,058 B1 (Feb. 21, 2023).
[7] 鄭恪亭、劉易軒、黃濟棠、劉鄭楷,“可連續電控線性偏振旋轉器”,中華民國專利,發明第I799160號(2023年4月11日).
[8] S.-W. Ko, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express 18, 3601-3607 (2010).
[9] David J. R. Cristaldi, S. Pennisi, and F. Pulvirenti, “Liquid Crystal Display Drivers,” Springer-Verlag, New York (2009).
[10] F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[11] T. Sluckin, “Fluídos Forada Lei, A história dos cristais líquidos: de curiosidade a tecnologia,” Instituto Superior Técnico (2007).
[12] H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90, 460-500 (2002).
[13] 松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版 (1996).
[14] G. R. Fowles, “Introduction to modern optics 2nd,” University of Utah. (1975).
[15] G. Vertogen, “Elastic constants and the continuum theory of liquid crystals,” Physica A. 117, 221-231 (1983).
[16] A. Yariv and P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley (2002).
[17] K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and Bruce Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Optics 46, 7544-7551 (2007).
[18] M. Kaczmarek and A. Dyadyusha, “Structured, photosensitive PVK and PVCN polymer layers for control of liquid crystal alignment,” J. Nonlinear Opt. Phys. Mater. 12, 547 (2003).
[19] T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52 (1996).
[20] Y. C. Liu, K. T. Cheng, H. F. Chen, and A. Y. G. Fuh, “Photo and electro isomerization of azobenzenes based on polymer dispersed liquid crystals doped with azobenzenes and their applications,” Opt. Express 22, 4404 (2014).
[21] I. Jánossy, A.D. Lloyd, B. S. Wherrett, “Anomalous Optical Freedericksz Transition in an Absorbing Liquid Crystal,” Mol. Crys. & Liq. Cryst. 203, 74 (1991).
[22] I. Jánossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183 (1992).
[23] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49 (1991).
[24] W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon and S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature 377, 43 (1995).
[25] S. Slussarenko, O. Francescangeli and F. Simoni, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71,3613 (1997).
[26] S.-C. Weng, A. Y.-G. Fuh, F.-C. Tang, and K.-T. Cheng, “Effect of surface condition on the photoalignment of light-induced adsorption phenomena based on azo dye-doped liquid crystals,” Liq. Cryst. 43, 1221-1229 (2016).
[27] P. Yeh and C. Gu, “Optics of Liquid Crystal Display”, John Wiley and Sons, New York (1999).
[28] C. Mauguin, “Sur les cristaux liquids de Lehman,” Bull. Soc. Franc. Mineral. 34 , 71 (1911).
[29] C. H. Gooch and H. A. Tarry, The optical properties of twisted nematic liquid crystal structure with twist angles≤90°,” J. Phys. D: Appl. Phys. 8, 157 (197 5).
[30] Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dielectric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. 30, 1443-1449 (1992).
[31] O. Yaroshchuk, H. Gurumurthy, V.G. Chigrinov, H. S. Kwok, H. Hasebe, and H. Takatsu, “Photoalignment Properties of Brilliant Yellow Dye,” Proc. IDW 7, 1665–1668 (2007).
[32] P. Mantashyan, R. Drampyan, J. Beeckman, O. Willekens, and K. Neyts, “Optical induction of Bessel-like lattices in methyl-red doped liquid crystal cells,” Opt. Commun. 338, 467–472 (2015).
[33] C.-K. Liu, S.-H. Liao, H.-T. Huang, and K.-T. Cheng, “Fabrication of azimuthally/radially symmetric liquid crystal plates using two-step photoalignments,” Opt. Express 31, 21962-21971 (2023).指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2023-11-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare