博碩士論文 106328026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.145.100.74
姓名 楊鈞偉(Chun-Wei Yang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 奈秒脈衝雷射透射焊接玻璃與鋁合金之表徵及機理
(Characterization and Mechanism of Nanosecond Laser Transmission Welding of Glass and Aluminum Alloy)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 異質材料的接合具有同時利用不同材料的特性,簡化複雜零件加工步驟的優勢;金屬具有良好導電性、玻璃具有高介電係數,兩者的結合可應用於各式傳感器、微機電系統的封裝上,如醫療、汽車、航太、光學等產業。相比於傳統方法,雷射透射焊接具有快速、具選擇性、非接觸加工等有利特性,應用潛力大是可靠的解決方案。
目前為止在國際期刊上所發表,關於金屬與玻璃雷射透射焊接的探討仍相當不足,且根據使用雷射種類焊接機制截然不同,然而大多數研究使用超快雷射作為加工源,奈秒雷射的加工機制尚未明朗。依照文獻分析結果顯示,在金屬與玻璃接合的課題,奈秒雷射與超快雷射焊接的強度並沒有明顯差異。以成本考量,使用技術成熟、價格低廉的奈秒雷射作為加工源,在產業應用方面更具有優勢。
本研究使用近紅外光波長的的奈秒雷射對鋁合金5052與玻璃材料的焊接進行研究。因鋁合金表面粗糙與玻璃間具有空氣間隙,參考文獻設計專用焊接治具提供壓力輔助,並選用單次單方向的擺盪線掃描策略,旨在補足目前文獻中尚有欠缺的奈秒雷射對金屬-玻璃焊接機制,以利於提升焊接品質。
實驗結果證實存在參數組合區間有利於焊接且不對玻璃造成缺陷,最大平均焊接強度為46.78 MPa。結合參數研究成果,分析焊接接頭的化學成分、表面形貌與失效模式,與記錄過程中發生現象,本研究提出奈秒雷射對鋁合金與玻璃的焊接機制。
摘要(英) The bonding of dissimilar materials can combine the excellent properties of individual materials and simplify the machining process. Metal has good conductivity and glass has a high dielectric coefficient. The welding of glass and metal has been applied to the fields such as MEMS, medical equipment, automobile, aerospace, and so on. Compared with traditional welding techniques, laser transmission welding has favorable characteristics such as rapidity, selectivity, and non-contact processing. It is a reliable solution with great application potential.
In the past, there was a lack of systematic research on laser transmission welding of metals and glasses, and most of the published research focused on the use of ultrafast lasers. There are relatively few reports on transmission welding using nanosecond lasers. The process and mechanism of laser welding generally differ for different types of laser sources. However, according to the research results, there is no significant difference in the welding quality between nanosecond laser and ultrafast laser in metal and glass welding. Relatively, nanosecond laser systems are well-established and generally less expensive than ultrafast lasers, giving them an advantage in industrial applications.
In this study, a nanosecond laser with a near-infrared wavelength of 1064 nm was used to weld aluminum alloy 5052 and glass. Due to the initial surface roughness of the aluminum alloy substrate, an air gap inevitably exists between the aluminum alloy and the glass. Based on previous studies, this study designed a welding fixture that provided pressure assistance and adopted a single-cycle, single-direction oscillating line-scanning strategy to reduce the influence of the air gap on welding. This research aims to make up for the deficiency of the metal-glass nanosecond laser welding mechanism, to improve the welding quality.
Experimental results show that there is a range of parameter processing windows that is favorable for welding that does not cause defects in the glass. The maximum average welding strength obtained was 46.78 MPa. This study explores the effects of chemical compositions and surface morphology on the resulting weld, analyzes the failure mode of the welded joint, and illuminates the phenomenon of videoed machining processes. Consequently, a comprehensive flow chart to describe the possible process for the welding of glass and aluminum alloy using a nanosecond laser was proposed.
關鍵字(中) ★ 雷射透射焊接
★ 異質材料接合
★ 奈秒雷射
★ 玻璃金屬接合
關鍵字(英) ★ laser transmission welding
★ dissimilar material bonding
★ nanosecond lasers
★ glass-metal bonding
論文目次 中文摘要 v
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xvi
Chapter 1 緒論 1
1-1 前言 1
1-2 研究背景與目的 4
Chapter 2 文獻回顧 7
2-1 材料對雷射能量的吸收機制 7
2-2 金屬-玻璃焊接 11
2-2-1 毫秒級雷射焊接 11
2-2-2 奈秒級雷射焊接 13
2-2-3 超快雷射焊接 14
2-3 動機與挑戰 18
Chapter 3 實驗方法 20
3-1 實驗流程與方法 20
3-2 實驗材料與製備 21
3-2-1 實驗材料 21
3-2-2 試片製備 22
3-3 實驗細節與設計 24
3-3-1 奈秒雷射系統 24
3-3-2 雷射焊接治具 26
3-3-3 剪力測試 28
3-4 雷射加工參數 31
3-5 檢測分析儀器 34
3-6 實驗材料與儀器清單 36
Chapter 4 結果與討論 37
4-1 材料表面性質 37
4-2 單次掃描雷射焊接 38
4-2-1 單次掃描可焊範圍 41
4-2-2 焊接強度 45
4-2-3 焊道寬度 51
4-3 焊接接頭分析 56
4-3-1 焊道的表面形貌 56
4-3-2 焊道的化學分析 60
4-3-3 焊接接頭的破壞模式 63
4-4 奈秒雷射焊接之現象 65
4-5 鋁合金-玻璃焊接機制 73
Chapter 5 結論 79
附錄、金屬與玻璃雷射焊接研究整理 81
參考文獻 83
碩士論文口試教授問題集 89
參考文獻 [1] "3D-Micromac introduces new laser system for half- and shingled-cell cutting in photovoltaic manufacturing." https://3d-micromac.com/3d-micromac-introduces-new-laser-system-for-half-and-shingled-cell-cutting-in-photovoltaic-manufacturing/
[2] "LASERTAU – LASER PROCESSING FOR AEROSPACE." https://www.twi-global.com/media-and-events/press-releases/2021/lasertau-laser-processing-for-aerospace
[3] R. Yi, C. Chen, Y. Li, H. Peng, H. Zhang, and X. Ren, "The bonding between glass and metal," The International Journal of Advanced Manufacturing Technology, vol. 111, no. 3-4, pp. 963-983, 2020, doi: 10.1007/s00170-020-06018-x.
[4] "SCHOTT - glass made of ideas." https://www.schott.com/en-tw
[5] "LITE: Measuring the Atmosphere With Laser Precision." https://www.nasa.gov/centers/langley/news/factsheets/LITE.html
[6] R. E. Lafon, S. X. Li, F. Micalizzi, S. W. Lebair, A. L. Glebov, and P. O. Leisher, "Ultrafast laser bonding of glasses and crystals to metals for epoxy-free optical instruments," presented at the Components and Packaging for Laser Systems VI, 2020.
[7] F. Marchione and P. Munafò, "Experimental strength evaluation of glass/aluminum double-lap adhesive joints," Journal of Building Engineering, vol. 30, 2020, doi: 10.1016/j.jobe.2020.101284.
[8] C. Chanmuang, M. Naksata, T. Chairuangsri, H. Jain, and C. E. Lyman, "Microscopy and strength of borosilicate glass-to-Kovar alloy joints," Materials Science and Engineering: A, vol. 474, no. 1-2, pp. 218-224, 2008, doi: 10.1016/j.msea.2007.04.016.
[9] L. Hu, Y. Xue, and H. Wang, "Glass-Cu joining by anodic bonding and soldering with eutectic Sn-9Zn solder," Journal of Alloys and Compounds, vol. 789, pp. 558-566, 2019, doi: 10.1016/j.jallcom.2019.02.257.
[10] O. Khandan, D. Stark, A. Chang, and M. P. Rao, "Wafer-scale titanium anodic bonding for microfluidic applications," Sensors and Actuators B: Chemical, vol. 205, pp. 244-248, 2014, doi: 10.1016/j.snb.2014.08.083.
[11] Q. Xing and G. Sasaki, "Nanostructured gamma-alumina formed during anodic bonding of Al/Glass," Solid State Ionics, vol. 178, no. 3-4, pp. 179-185, 2007, doi: 10.1016/j.ssi.2006.12.012.
[12] G. Feng, Z. Li, X. Xu, Z. Shen, and Y. Yang, "Glass-Copper anodic bonding through activated Sn-0.6Al solder," Journal of Materials Processing Technology, vol. 254, pp. 108-113, 2018, doi: 10.1016/j.jmatprotec.2017.11.038.
[13] H. Potente, J. Korte, and F. Becker, "Laser transmission welding of thermoplastics: analysis of the heating phase," Journal of reinforced plastics and composites, vol. 18, no. 10, pp. 914-920, 1999.
[14] "Laserline - Laser welding plastic." https://www.laserline.com/en-int/laser-welding-plastic/
[15] S. Richter, S. Nolte, and A. Tünnermann, "Ultrashort Pulse Laser Welding - A New Approach for High- Stability Bonding of Different Glasses," Physics Procedia, vol. 39, pp. 556-562, 2012, doi: 10.1016/j.phpro.2012.10.073.
[16] Keming Du and P. Shi, "Subsurface precision machining of glass substrates by innovative lasers," Glass Sci. Technol, vol. 76, no. 2, pp. 95-98, 2003.
[17] B. Fan et al., "The Molecular Mechanism of Retina Light Injury Focusing on Damage from Short Wavelength Light," Oxid Med Cell Longev, vol. 2022, p. 8482149, 2022, doi: 10.1155/2022/8482149.
[18] I. Miyamoto, "Laser welding of glass," in Handbook of Laser Welding Technologies, 2013, pp. 301-331.
[19] A. UTSUMI, T. OOIE, T. YANO, and M. KATSUMURA, "Direct Bonding of Glass and Metal Using Short Pulsed Laser," Journal of Laser Micro/Nanoengineering, vol. 2, no. 2, 2007.
[20] L. Chuangye, Z. Min, C. Changjun, W. Xiaonan, and C. Wengang, "Effect of Laser Weld Spacing and Multipass Welding on Performance of Glass Sealing with Aluminium Alloy and Underlying Mechanism," CHINESE JOURNAL OF LASERS, vol. 43, no. 7, 2016.
[21] Z. Tao, C. Changjun, Z. Min, and L. Xing, "Study on Laser Welding Mechanisms of Glass/Stainless-Steel and Glass/Titanium-Alloy Materials," CHINESE JOURNAL OF LASERS, vol. 43, no. 9, 2016.
[22] Z. Min, C. Yufei, C. Changjun, and Q. Zhaoling, "A new sealing technology for ultra-thin glass to aluminum alloy by laser transmission welding method," The International Journal of Advanced Manufacturing Technology, vol. 115, no. 7-8, pp. 2017-2035, 2021, doi: 10.1007/s00170-021-07226-9.
[23] P. Li, X. Xu, W. Tan, H. Liu, and X. Wang, "Improvement of Laser Transmission Welding of Glass with Titanium Alloy by Laser Surface Treatment," Materials (Basel), vol. 11, no. 10, Oct 22 2018, doi: 10.3390/ma11102060.
[24] H. K. Lin, S. Z. Hong, B. F. Chung, and R. C. Lin, "Characterization of local laser bonding quartz to anodic aluminum oxide in light emission device," Optical and Quantum Electronics, vol. 49, no. 1, 2016, doi: 10.1007/s11082-016-0835-0.
[25] P. Floropoulos, V. Karoutsos, K. Tourlouki, G. Papanicolaou, and D. Alexandropoulos, "Glass-to- Aluminum Joints Using Industrial Nanosecond IR Fiber Lasers," 2021.
[26] C. Li et al., "High shear strength welding of soda lime glass to stainless steel using an infrared nanosecond fiber laser assisted by surface tension," Optics and Lasers in Engineering, vol. 161, 2023, doi: 10.1016/j.optlaseng.2022.107329.
[27] R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, "Picosecond laser welding of similar and dissimilar materials," Appl Opt, vol. 53, no. 19, pp. 4233-8, Jul 1 2014, doi: 10.1364/AO.53.004233.
[28] O. P. Ciuca, R. M. Carter, P. B. Prangnell, and D. P. Hand, "Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds," Materials Characterization, vol. 120, pp. 53-62, 2016, doi: 10.1016/j.matchar.2016.08.013.
[29] L. Zhang, H. Wu, J. Wen, M. Li, X. Shao, and X. Ma, "Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser," Journal of Materials Processing Technology, vol. 302, 2022, doi: 10.1016/j.jmatprotec.2022.117504.
[30] Y. Ozeki et al., "Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses," Applied Physics Express, vol. 1, 2008, doi: 10.1143/apex.1.082601.
[31] C. Incorporated, "Corning EAGLE XG Slim Product Information Sheet," 2019.
[32] R. M. Carter et al., "Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy," Appl Opt, vol. 56, no. 16, pp. 4873-4881, Jun 1 2017, doi: 10.1364/AO.56.004873.
[33] "Cometech Testing Machine Co., Ltd. ." https://www.cometech.com.tw/cht/
[34] "Xyztec - Bond testers Sigma." https://www.xyztec.com/
[35] G. Schnell, U. Duenow, and H. Seitz, "Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces," Materials (Basel), vol. 13, no. 4, Feb 21 2020, doi: 10.3390/ma13040969.
[36] S. Matsuyoshi, Y. Mizuguchi, A. Muratsugu, H. Yamada, T. Tamaki, and W. Watanabe, "Welding of Glass and Copper with a Rough Surface using Femtosecond Fiber Laser Pulses," Journal of Laser Micro/Nanoengineering, vol. 13, no. 1, pp. 21-25, 2018, doi: 10.2961/jlmn.2018.01.0005.
[37] K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, "Gap bridging in joining of glass using ultra short laser pulses," Opt Express, vol. 23, no. 5, pp. 5681-93, Mar 9 2015, doi: 10.1364/OE.23.005681.
[38] H. Chen, L. Deng, J. Duan, and X. Zeng, "Picosecond laser welding of glasses with a large gap by a rapid oscillating scan," Opt Lett, vol. 44, no. 10, pp. 2570-2573, May 15 2019, doi: 10.1364/OL.44.002570.
[39] W. Tao and S. Yang, "Weld zone porosity elimination process in remote laser welding of AA5182-O aluminum alloy lap-joints," Journal of Materials Processing Technology, vol. 286, 2020, doi: 10.1016/j.jmatprotec.2020.116826.
[40] Y. Wang, Y. Li, S. Ao, Z. Luo, and D. Zhang, "Welding of 304 stainless steel and glass using high-repetition-frequency femtosecond laser," Materials Research Express, vol. 8, no. 10, 2021, doi: 10.1088/2053-1591/ac30b1.
[41] G. Zhang and G. Cheng, "Direct welding of glass and metal by 1 kHz femtosecond laser pulses," Appl Opt, vol. 54, no. 30, pp. 8957-61, Oct 20 2015, doi: 10.1364/AO.54.008957.
[42] N. Amanat, C. Chaminade, J. Grace, D. R. McKenzie, and N. L. James, "Transmission laser welding of amorphous and semi-crystalline poly-ether–ether–ketone for applications in the medical device industry," Materials & Design, vol. 31, no. 10, pp. 4823-4830, 2010, doi: 10.1016/j.matdes.2010.04.051.
[43] C. Ma et al., "Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation," Journal of Materials Research, vol. 30, no. 18, pp. 2816-2828, 2015, doi: 10.1557/jmr.2015.267.
[44] G. M. A. Mahran, A.-N. M. Omran, and E.-S. S. Abu Seif, "The Formation Mechanism and Characterization of Al-Si Master Alloys from Sodium Fluosilicate," Materials Science, vol. 26, no. 2, pp. 185-191, 2019, doi: 10.5755/j01.ms.26.2.21896.
[45] K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, "A review on glass welding by ultra-short laser pulses," International Journal of Extreme Manufacturing, vol. 1, no. 4, 2019, doi: 10.1088/2631-7990/ab55f6.
[46] Z. Yan, X. Mei, W. Wang, A. Pan, Q. Lin, and C. Huang, "Numerical simulation on nanosecond laser ablation of titanium considering plasma shield and evaporation-affected surface thermocapillary convection," Optics Communications, vol. 453, 2019, doi: 10.1016/j.optcom.2019.124384.
[47] T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," Journal of Applied Physics, vol. 86, no. 3, pp. 1311-1316, 1999, doi: 10.1063/1.370887.
[48] J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, "Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion," Applied Physics Letters, vol. 102, no. 16, 2013, doi: 10.1063/1.4803044.
[49] Q. Lia, G. Matthäus, and S. Nolte, "Glass to copper direct welding with a rough surface by femtosecond laser pulse bursts," presented at the Lasers in Manufacturing Conference 2021, 2021.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2023-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明