博碩士論文 110521056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.143.235.212
姓名 馮耕豪(Geng-Hao Feng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 紋理鋸齒型石墨烯奈米帶的熱電特性
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 紋理鋸齒型石墨烯奈米帶(t-ZGNRs)的熱電特性非常特別,其傳輸係數帶有類似於Square Form (SF)傳輸係數的概念,因此值得我們去研究其熱電特性。我們用緊束縛模型(tight-binding mode)的架構來研究t-ZGNRs連接到電極的熱電特性,除了通過調控穿隧率來提高功率因子和熱電優質,還有調控graphene quatum dots (GQDs)的數量來控制GNR迷你帶的寬度及能隙,我們發現紋理鋸齒型石墨烯奈米帶(t-ZGNRs)的功率因子和熱電優質(ZT)的最大值都發生在能帶邊緣,而要有好的功率因子必須電導率、席貝克係數要大,聲子熱導要小,但是也會影響到熱電優質(ZT),因此如何在這些參數之間取得最佳化,也是我們要面對的問題。
摘要(英) The thermoelectric properties of textured zigzag graphene nanoribbons (t-ZGNRs) are highly unique. They exhibit a transmission coefficient with a concept similar to Square Form (SF) transmission coefficient, making it worthwhile to research their thermoelectric properties. We utilize the thermoelectric properties of t-ZGNRs connected to electrodes using a tight-binding model framework. In addition to enhancing the power factor (PF) and figure of merit (ZT) by controlling the tunneling rates, we also manipulate the number of graphene quantum dots (GQDs) to control the width and energy gap of GNR minibands. We observe that the maximum values of PF and ZT in t-ZGNRs occur near the band edges. To achieve a high PF, it is essential to have a large electrical conductivity and Seebeck coefficient while minimizing phonon thermal conductivity. However, these factors also affect ZT. Therefore, finding a balance among these parameters is also a challenge we have to face.
關鍵字(中) ★ 紋理鋸齒形石墨烯奈米帶
★ 熱電特性
★ 量子點
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章、導論 1
1-1前言 1
1-2石墨烯 3
1-3石墨烯奈米帶 4
1-4 研究動機 5
第二章、系統模型和公式推導 6
2.1系統模型建立 6
2-2熱電效應 7
2-3系統電子總能 8
2-4電子流與電子熱流計算 9
2-5熱電係數 10
第三章、熱電特性模擬與分析 12
3-1 ZGNRs與t-ZGNRs的傳輸係數Transmission coefficient比較 12
3-2穿隧率對熱電係數的影響 13
3-3溫度對熱電係數的影響 15
3-4不同尺寸(Na)對熱電係數的影響 17
3-5不同尺寸(Nz)對熱電係數的影響 19
第四章、結論 21
參考文獻 22
參考文獻 [1] K.E. Lonngren. On the global warming problem due to carbon dioxide. Energy Policy 36, 1567 (2008).

[2] R. S. Whitney. Most Efficient Quantum Thermoelectric at Finite Power Output. Phys. Rev. Lett. 112,13 (2014).

[3] Y. Xu, Z. X. Gan and S. C. Zhang. Enhanced Thermoelectric Performance
and Anomalous Seebeck Effects in Topological Insulators. Phys. Rev. Lett. 112,226801 (2014).

[4]G. D. Mahan and J. O. Sofo. The best thermoelectric.Proc. Natl. Acad. Sci. USA 93, 7436,(1996).

[5]T. Horiand J. Shiomi. Tuning phonon transport spectrum for better thermoelectric materials. Sci. and Tech of Advanced Mater.20, 10 (2020).

[6]A. I. Boukai,Y. Bunimovich, J. Tahir-Kheli,J . K. Yu , W. A. GoddardandJ. R. Heath. Silicon nanowires as efficient thermoelectric materials. Nature451, 168 (2008).

[7]F. Dominguez-Adame,M. Martin-Gonzalez,D. Sanchezand A. Cantarero.
Nanowires: A route to efficient thermoelectric devices. Phys Low Dimensional Systems & Nanostructures 113, 213 (2019).

[8] David M. T. Kuo and Y. C. Chang. Contact Effects on Thermoelectric Properties of TexturedGraphene Nanoribbons. Nanomaterials 12, 3357 (2022).

[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang , S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Novel Two-Dimensional Materials: Graphene and Its Applications. Science 306, 666 (2004).

[10] J. Baringhaus,M.Ruan, F. Edler, A.Tejeda,M. Sicot,A. Taleb-Ibrahimi,A. P. Li,Z. G. Jiang,E. H. Conradand C. Berger.Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349 (2014).

[11] S. K. Tiwari,S. Sahoo, N. Wang and A. Huczko.Graphene research and their outputs: Statusand prospect. Journal of Sci. Advanced Mater. And Devices 5, 10 (2020).

[12] M. Batzill. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports 67, 83 (2012).

[13] H. M. Wang,H. S. Wang,C. X. Ma,L. X. Chen, C.X. Jiang,C. Chen,X. M. Xie,A. P. LiandX. R. Wang.Graphene nanoribbons for quantum electronics. Nature Rev. Phys 3, 791 (2021).

[14] A. Kimouche, M. M. Ervasti, R. Drost,S. Halonen,A. Harju,P. M. Joensuu,J. Sainioand P. Liljeroth. Ultra-narrow metallic armchair graphene nanoribbons. Nature Communications 6, 10177 (2015).

[15] G. Z. Magda,X. Z. Jin,I. Hagymasi,P. Vancso,Z. Osvath,P. Nemes-Incze,C. Y. Hwang,L.P. Biroand L. Tapasz. Room-temperature magnetic orderon zigzag edges of narrow graphene nanoribbons. Nature 514, 608 (2014).

[16] D. Topwal. Quantum confinement effects in low-dimensional systems. Pramana-Journal of Phys 84, 1023 (2015).

[17] L. D. Hicksand M. S. Dresselhaus.Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev. B 47, 16631 (1993).

[18] J. Z. Liuand X. L. Feng. SyntheticTailoring of Graphene Nanostructures
with Zigzag-Edged Topologies: Progress and Perspectives. AngewandteChemie-International Edition 59, 23386 (2020).

[19] P. Ruffieux,S. Y. Wang,B. Yang,C. Sanchez-Sanchez,J. Liu, T. Dienel, L. Talirz,P. Shinde,C. A. Pignedoliand D. Passerone.On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489 (2016).

[20] H. Sevincli,M. Topsakaland S. Ciraci.Superlattice structures of
graphene-based armchair nanoribbons. Phys. Rev. B 78, 245402
(2008).

[21] M. Topsakal,H. Sevincliand S. Ciraci.Spin confinement in
the superlattices of graphene ribbons. Appl. Phys. Lett. 82, 173118 (2008).

[22] H. Haug and A. P. Jauho. Quantum Kinetics in Transport and Optics of Semiconductors. (Springer, Heidelberg, 1996).

[23] David M. T. Kuo.Thermoelectric and electron heat rectification properties
of quantum dot superlattice nanowire arrays. AIP Advances 10, 45422 (2020).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2023-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明