博碩士論文 110521074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.118.146.46
姓名 董學易(TUNG HSUEH-YI)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於變高斯濾波模糊神經網路之太陽能發電系統輸出平滑控制策略
(Output Smoothing Control Strategy for Solar Power Generation Systems Based on Improved Gaussian Filter and Fuzzy Neural Network)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來全球對於發展和應用再生能源越來越關注,尤其是太陽能(Photovoltaics, PV)技術。然而太陽能發電具有高度的間歇性,可能會影響電力系統的電力品質,因此結合電池儲能系統(Battery Energy Storage System, BESS)來提高電網的穩定性成為解決方案之一。但受限於併網法規和儲能系統成本高昂,使用平滑濾波器與BESS相結合來降低成本和穩定輸出功率已成為一種受到廣泛關注的方法。
本文提出的變高斯濾波算法中除了能有效減少時間延遲現象,貼合原功率輸出波型,也擁有較好的平滑程度。此外本文提出一種模糊類神經網路(Fuzzy Neural Network),透過輸入電池電量、負載使用量以及太陽能功率並模糊化後,獲得各電網的分配比例。本文場域利用儲能系統、太陽能系統與負載整合成三區多微電網系統,結合太陽能平滑並控制統合各區輸出功率,使得系統總體輸出回市電端能有效平滑且符合台灣電力公司規定,透過獲得的分配比例能有效平衡三區微電網的電池電量並使其保持一致。此控制策略除了能有效提高市電端的電力品質,且能維持電量的平衡讓整體電網的使用時間提升。

本文模擬採用MATLAB/Simulink模擬軟體來模擬與比較本文平滑化控制策略的可行性,並使用C語言撰寫相關類神經演算法與平滑算法,最終在實驗場域驗證其控制策略之結果。
摘要(英) In recent years, there has been increasing global interest in the development and application of renewable energy, particularly Photovoltaics (PV) technology. However, due to the intermittent nature of solar power generation, it may cause problems such as power system faults or blackouts. Combining Battery Energy Storage System (BESS) to improve the stability of the grid has become one of the solutions. However, due to regulatory constraints and the high cost of energy storage systems, combining smoothing filters with BESS to reduce costs and stabilize output power has become a widely recognized method.
This article proposes a variable Gaussian filter algorithm that not only effectively reduces time delays and fits the original power output waveform but also has good smoothness. In addition, a Fuzzy Neural Network is proposed in this article, which inputs the battery power, load usage, and solar power and obtains the allocation ratio of each power grid after fuzzification. The experimental field of this article uses the storage system, PV system, and load integration into three micro-grid systems, combined with solar smoothing and control, to integrate the output power of the three micro-grid systems, enabling effective smoothing and meeting the ramp rate set by Taiwan Power Company. Through the obtained allocation ratio, the battery power of the three micro-grids can be effectively balanced and kept consistent. This control strategy not only effectively improves the power quality at the grid end but also maintains the balance of power, improving the overall use time of the power grid.
This article uses Matlab/Simulink simulation software to simulate and compare the feasibility of the smoothing control strategy proposed in this article. The relevant neural network algorithms and smoothing algorithms are written in C language, and the results of the control strategy are verified in the experimental field.
關鍵字(中) ★ 多微電網
★ 太陽能平滑化
★ 電力調度策略
關鍵字(英) ★ multi-microgrids
★ solar power smoothing method
★ power dispatch strategy
論文目次 目錄
論文摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1研究背景與動機 1
1-2 文獻探討 2
1-3 論文大綱 5
第二章 太陽能平滑化方法與現行規範 6
2-1 移動平均濾波器 6
2-2 雙移動平均濾波器 7
2-3 指數移動平均濾波器 8
2-4 一維高斯濾波器 9
2-5 變高斯濾波器 11
2-6 比較指標與法規 13
2-6-1 功率變動率 13
2-6-2 峰谷平均曲率指標 15
2-6-3 平滑度指數 15
2-6-4 均方根誤差 16
2-6-5 平均絕對誤差 17
第三章 平滑後輸出功率調節系統與控制法 18
3-1 系統介紹 18
3-2 控制調度架構 19
3-3 模糊類神經網路控制架構與方法 22
3-3-1 模糊控制理論 23
3-3-2 類神經網路理論 30
3-3-3 模糊類神經網路架構 34
3-3-4 模糊類神經網路學習法則 38
第四章 系統模擬結果與比較 41
4-1 方法結果圖形分析 42
4-1-1 高斯濾波器補償法比較 42
4-1-2 變高斯濾波器比較 45
4-1-3 移動平均法比較 48
4-1-4 雙移動平均法比較 50
4-1-5 指數移動平均法比較 52
4-2 指標分析比較 55
4-2-1 功率變動率比較 55
4-2-2 峰谷平均曲率指標比較 58
4-2-3 平滑度指數比較 61
4-2-4 均方根誤差比較 63
4-2-5 平均絕對誤差比較 66
4-3 控制策略模擬比較 68
4-3-1 CASE1個別平滑 70
4-3-2 CASE2模糊類神經控制策略 74
第五章 系統實作驗證結果 76
5-1 實驗場域介紹 76
5-2 控制通訊介紹 82
5-2-1 MODBUS RTU 83
5-2-2 MODBUS TCP 84
5-2-3 CONTROLLER AREA NETWORK 86
5-3 實驗場域結果分析 87
第六章 結論與未來研究方向 90
6-1 結論 90
6-2 未來研究方向 91
參考文獻 92
參考文獻 參考文獻
[1] J. N. Mayer, D. S. Philipps, N. S. Hussein, T. Schlegl and C. Senkpiel, "Current and future cost of photovoltaics", Agora Energiewende, Feb. 2015.
[2] A. Woyte, V. Van Thong, R. Belmans and J. Nijs, "Voltage fluctuations on distribution level introduced by photovoltaic systems", IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 202-209, Mar. 2006.
[3] S. You et al., "Comparative assessment of tactics to improve primary frequency response without curtailing solar output in high photovoltaic interconnection grids", IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 718-728, Jun. 2018.
[4] X. Liang, "Emerging power quality challenges due to integration of renewable energy sources", IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 855-866, Nov. 2016.
[5] P. K. Ray, S. R. Mohanty and N. Kishor, "Classification of power quality disturbances due to environmental characteristics in distributed generation system", IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 302-313, Nov. 2012.
[6] M. Karimi, H. Mokhlis, K. Naidu, S. Uddin and A. Bakar, "Photovoltaic penetration issues and impacts in distribution network—A review", Renew. Sustain. Energy Rev., vol. 53, pp. 594-605, Jan. 2016,http://www.sciencedirect.com/science/article/pii/S136403211500903X.
[7] A. Ellis, D. Schoenwald, J. Hawkins, S. Willard and B. Arellano, "PV output smoothing with energy storage", Proc. 38th IEEE Photovolt. Spec. Conf., pp. 1523-1528, Jun. 2012.
[8] R. K. Lam and H.-G. Yeh, "PV ramp limiting controls with adaptive smoothing filter through a battery energy storage system", Proc. IEEE Green Energy Syst. Conf. (IGESC), pp. 55-60, Nov. 2014.
[9] X. Li, D. Hui and X. Lai, "Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations", IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 464-473, Apr. 2013.
[10] C. Bharatiraja, S. Jeevananthan and R. Latha, "FPGA based practical implementation of NPC-MLI with SVPWM for an autonomous operation PV system with capacitor balancing", Int. J. Electr. Power Energy Syst., vol. 61, pp. 489-509, Oct. 2014.
[11] B. Vatandoust, A. Ahmadian, M. A. Golkar, A. Elkamel, A. Almansoori and M. Ghaljehei, "Risk-averse optimal bidding of electric vehicles and energy storage aggregator in day-ahead frequency regulation market", IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2036-2047, May 2019.
[12] H. Ren, Q. Wu, W. Gao and W. Zhou, "Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for residential applications", Energy, vol. 113, pp. 702-712, Oct. 2016.
[13] W. Kreeumpornand and I. Ngamroo, "Optimal superconducting coil integrated into PV generators for smoothing power and regulating voltage in distribution system with PHEVs", IEEE Trans. Appl. Supercond., vol. 26, no. 7, Oct. 2016.
[14] A. Awad, I. Tumar, M. Hussein, W. Ghanem and J. A. Sa’ed, "PV output power smoothing using flywheel storage system", Proc. IEEE Int. Conf. Environ. Electr. Eng., pp. 1-6, Jun. 2017.
[15] S. Golestan, M. Ramezani, J. M. Guerrero, F. D. Freijedo and M. Monfared, "Moving average filter based phase-locked loops: performance analysis and design guidelines", IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2750-2763, Jul. 2014.
[16] J. Marcos, L. Marroyo, E. Lorenzo, D. Alvira and E. Izco, "From irradiance to output power fluctuations: the PV plant as a low pass filter", Progress in Photovoltaics: Research and Applications, vol. 19, no. 5, pp. 505-510, May 2011.
[17] A. Addisu, L. George, P. Courbin and V. Sciandra, "Smoothing of renewable energy generation using Gaussian-based method with power constraints", Energy Procedia, vol. 134, pp. 171-180, Oct. 2017.
[18] A. Atif and M. Khalid, "Saviztky–Golay filtering for solar power smoothing and ramp rate reduction based on controlled battery energy storage", IEEE Access, vol. 8, pp. 33806-33817, 2020.
[19] A. A. Abdalla and M. Khalid, "Smoothing methodologies for photovoltaic power fluctuations", Proc. 8th Int. Conf. Renew. Energy Res. Appl. (ICRERA), pp. 342-346, Nov. 2019.
[20] M. A. Syed, A. A. Abdalla, A. Al-Hamdi and M. Khalid, "Double Moving Average Methodology for Smoothing of Solar Power Fluctuations with Battery Energy Storage," 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 2020, pp. 291-296, doi: 10.1109/SGES51519.2020.00058.
[21] R. P. Sasmal, S. Sen and A. Chakraborty, "Solar photovoltaic output smoothing: Using battery energy storage system", Proc. Nat. Power Syst. Conf. (NPSC), pp. 1-5, Dec. 2016.
[22] R. Kini, D. Raker, T. Stuart, R. Ellingson, M. Heben and R. Khanna, "Mitigation of PV Variability Using Adaptive Moving Average Control," in IEEE Transactions on Sustainable Energy, vol. 11, no. 4, pp. 2252-2262, Oct. 2020, doi: 10.1109/TSTE.2019.2953643.
[23] H. Tajiri and T. Kumano, "Input filtering of MPPT control by exponential moving average in photovoltaic system," 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu,Malaysia,2012,pp.372-377,doi: 10.1109/PECon.2012.6450240.
[24] E. Usaratniwart and S. Sirisukprasert, "Adaptive enhanced linear exponential smoothing technique to mitigate photovoltaic power fluctuation," 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Melbourne, VIC, Australia, 2016, pp. 712-717, doi: 10.1109/ISGT-Asia.2016.7796472.
[25] D. Varghese and K. C. S. Thampatty, "Analysis on power oscillation smoothening techniques for 1MWp PV plant," 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 2022, pp. 1-7, doi: 10.1109/PESGRE52268.2022.9715841.
[26] M. J. E. Alam, K. M. Muttaqi and D. Sutanto, "A novel approach for ramp-rate control of solar PV using energy storage to mitigate output fluctuations caused by cloud passing", IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 507-518, Jun. 2014.
[27] X. Li, D. Hui and X. Lai, "Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations", IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 464-473, Mar. 2013.
[28] M. A. Syed and M. Khalid, "Moving Regression Filtering With Battery State of Charge Feedback Control for Solar PV Firming and Ramp Rate Curtailment," in IEEE Access, vol. 9, pp. 13198-13211, 2021, doi: 10.1109/ACCESS.2021.3052142.
[29] "Puerto rico electric power authority minimum technical requirements for photovoltaic (PV) generation projects", PREPA, 2012.
[30] "Technical guideline—For power generating units systems and storage systems as well as for their components" in Germany Grid Codes, Fördergesellschaft Windenergie und andere Dezentrale Energien, 2019.
[31] CRE Reglas generales de interconexión al sistema eléctrico nacional: anexo 3: requerimientos técnicos para interconexión de centrales solares fotovoltaicas al sistema eléctrico nacional.
[32] J. Martins et al., "Comparative study of ramp-rate control algorithms for PV with energy storage systems", Energies, vol. 12, no. 7, 2019.
[33] V. Gevorgian and S. Booth, "Review of PREPA technical requirements for interconnecting wind and solar generation", 2013.
[34] "Technical regulation 3.2.2 for PV power plants above 11 kW", pp. 1-111, 2016.
[35] 「再生能源發電系統調度操作準則」,台灣電力公司,民國111年
[36] 王文俊,認識 Fuzzy 理論與應用,第四版,全華圖書股份有限公 司,中華民國 109 年 9 月。
指導教授 陳正一 審核日期 2023-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明