博碩士論文 110521066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.116.62.106
姓名 蔡淯紘(Yu-Hong Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫熱電材料之製程開發與模組製作
(Process Development of N-Type Mg2(SiSn) Thermoelectric Materials and Modules)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在科技快速發展的時代,我們面臨著大量能源消耗的問題,而化石能源一直是主要的能源來源。然而,近年來電動車的蓬勃發展表明各國都在積極探索替代化石能源的可能性。人們對環境保護的意識不斷提高,可再生能源也受到了更多關注,這使得熱電材料成為未來的關鍵技術。熱電材料可以回收廢熱,將浪費或多餘的熱能轉換為電能,從而提高總體能量轉換效率。這種材料的特性使其成為可再生能源的重要基礎。本實驗參考了前屆學長在N型Mg2(SiSn)熱電材料方面的實驗結果,進一步測試在混合不同比例的MgSi基礎上,進行金屬接觸的測試,我們通過粉末摻雜、混和、冷壓成型、高溫燒結和金屬接觸的銜接等步驟來製備熱電塊材,並實驗過程中我們對不同金屬接觸的熱電塊材進行了電性量測和分析,接著與實驗室的陳韋翰同學研究的P型Mg2(SiSn)熱電塊材進行了搭配,我們將這些材料組合起來,製備了單對的PN熱電元件,最終選擇了具有優異熱電性能的Mg2SiSn熱電塊材,並將其製作成熱電模組。
摘要(英) In the era of rapid technological development, we are faced with the problem of massive energy consumption, and fossil energy has always been the main source of energy. However, the vigorous development of electric vehicles in recent years shows that all countries are actively exploring the possibility of replacing fossil energy. Increasing awareness of environmental protection and increased attention to renewable energy sources make thermoelectric materials a key technology for the future. Thermoelectric materials can recover waste heat and convert wasted or excess thermal energy into electricity, thereby increasing the overall energy conversion efficiency. The properties of this material make it an important basis for renewable energy. This experiment refers to the experimental results of the previous seniors on N-type Mg_2(SiSn) thermoelectric materials. Further testing is based on mixing different proportions of MgSi to conduct metal contact tests. We use powder doping, mixing, cold pressing, high temperature sintering and metal contact joints are used to prepare thermoelectric bulk materials. During the experiment, we measured and analyzed the electrical properties of thermoelectric bulk materials with different metal contacts. Matching, a single pair of PN thermoelectric elements was prepared, and finally the Mg2SiSn thermoelectric block material with excellent thermoelectric properties was selected and made into a thermoelectric element.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 熱電轉換效應
★ 熱電優值
★ 粉末冶金製程
★ 熱電模組
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章、緒論 1
1-1 前言 1
1-2 熱電材料發展的歷史 1
1-3 熱電材料特性的應用與前景 3
第二章、熱電特性與文獻回顧 4
2-1 前言 4
2-2 熱電特性與理論 4
2-2-1 熱電優值 4
2-2-2 Seebeck effect 6
2-2-3 Peltier effect 7
2-2-4 Thomson effect 8
2-3 文獻回顧 9
2-3-1 Mg2(SiSn)晶體結構 9
2-3-2 Mg2(SiSn)熱電材料 10
2-3-3 熱電材料固液態擴散接合 13
第三章、量測方式 15
3-1 量測儀器 15
3-1-1 席貝克係數量測 15
3-1-2 電導率量測 17
3-1-3 密度量測 18
3-1-4 熱擴散率量測 19
3-1-5 比熱量測 20
3-1-6 熱傳導率 21
3-1-7 材料結構微觀分析 21
3-1-8 材料晶體結構分析 22
3-1-9 模組電性分析 23
第四章、實驗步驟 25
4-1 實驗步驟流程圖 25
4-2 實驗步驟 26
4-3-1 矽粉的製程 26
4-3-2 鎂矽的製程 31
4-3-3 鎂矽錫金屬接觸的製程 34
4-3-4 單對元件的製作 36
4-3-5 模組的製作 39
第五章、實驗結果與討論 42
5-1 前言 42
5-2 低鎂矽金屬接觸測試實驗結果 43
5-3 高鎂矽金屬接觸測試實驗結果 46
5-4 熱電元件及模組實驗結果討論 47
5-4-1 電阻點焊接合 47
5-4-2 低溫導電銀膠接合 49
5-4-3 大型模組電性分析 51
第六章、結論與未來展望 58
參考文獻 60
參考文獻 [1] "H. Julian Goldsmid, "Introduction to Thermoelectricity" ,2009.."
[2] "T.E.o.E. Britannica and S. A. History. "Peltier effect. "https://www.britannica.com/science/Peltier-effect. " (accessed
[3] Shabbusharma. "What is Thomson Effect? Origin of Thomson effect and Thomson coefficient. " https://physicswave.com/what-is-thomson-effect/. " (accessed
[4] J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, no. 6358, Sep 29 2017, doi: 10.1126/scienc.aak9997.
[5] X. Zhang and L.-D. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity," Journal of Materiomics, vol. 1, no. 2, pp. 92-105, 2015, doi: 10.1016/j.jmat.2015.01.001.
[6] S. J. Wang et al., "Highly efficient modulation doping: A path toward superior organic thermoelectric devices," Sci Adv, vol. 8, no. 13, p. eabl9264, Apr 2022, doi: 10.1126/sciadv.abl9264.
[7] "G. K. H. Madsen, J. Am. Chem. Soc., 2006, 128: 12140. ."
[8] G. Korotcenkov, V. Brinzari, and M.-H. Ham, "In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion," Crystals, vol. 8, no. 1, p. 14, 2018, doi: 10.3390/cryst8010014.
[9] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature Materials, vol. 7, no. 2, pp. 105-114, 2008, doi: 10.1038/nmat2090.
[10] Y. T. Chen and C. L. Chen, "The Application of Thermoelectricity in Renewable Energy," Physics Bimonthly, 2020.
[11] "Thermoelectric effect" Eng.FSU.edu., 2002-02-01.
[12] Wu, H. J.、Deng, P. Y.、Yen, W. T.、Tsai, I. F.“Research and Application of Thermoelectric Material Phase Diagram,”Industrial Materials, pp. 23-32, 2019.
[13] 朱旭山"熱電材料之元件與應用,"工研院工業材料研究所.
[14] Carier, P. Sctbnord.; Joint Stock company: 1999.
[15] https://www.researchgate.net/figure/The-Thomson-effect_fig3_292976771
[16] Y. R. Jin, Z. Z. Feng, L. Y. Ye, Y. L. Yan, and Y. X. Wang, "Mg2Sn: a potential mid- temperature thermoelectric material," RSC Advances, vol. 6, no. 54, pp. 48728-48736, 2016, doi: 10.1039/c6ra04986a.
[17] X. Liu et al., "Significant Roles of Intrinsic Point Defects in Mg2X(X= Si, Ge, Sn) Thermoelectric Materials," Advanced Electronic Materials, vol. 2, no. 2, 2016, doi: 10.1002/aelm.201500284.
[18] R. Santos, S. Aminorroaya Yamini, and S. X. Dou, "Recent progress in magnesium-based thermoelectric materials," Journal of Materials Chemistry A, vol. 6, no. 8, pp. 3328-3341, 2018, doi: 10.1039/c7ta10415d.
[19] https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.205212
[20] M. Søndergaard, M. Christensen, K. A. Borup, H. Yin, and B. B. Iversen, "Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4," Journal of Materials Science, vol. 48, no. 5, pp. 2002-2008, 2012, doi: 10.1007/s10853-012-6967-0.
[21] https://www.researchgate.net/publication/303325315_High_temperature_oxidation_of_Mg2Si-Sn
[22] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions," Phys Rev Lett, vol. 108, no. 16, p. 166601, Apr 20 2012, doi: 10.1103/PhysRevLett.108.166601.
[23] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi- doping," Applied Physics Letters, vol. 103, no. 6, 2013, doi: 10.1063/1.4816971.
[24] 葉威廷, "固液擴散接合製作熱電模組之界面反應及其電性之研究," 2014.
[25] T.H. Chuang, H.J. Lin, and C.W. Tsao, J. Electron. Mater. 35, 1566 (2006).
[26] J.C. Lin, L.W. Huang, and G.Y. Jang, Thin Solid Films 410, 212 (2002).
[27] T. Chuang, H. Lin, C. Chuang, W. Yeh, J. Hwang, and H. Chu, "Solid liquid interdiffusion bonding of (Pb, Sn) Te thermoelectric modules with Cu electrodes using a thin-film Sn interlayer," Journal of electronic materials, vol. 43, pp. 4610-4618, 2014.
[28] S. Barder, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).
[29] M. Orihashie, Y. Noda, L.D. Chen, T. Goto, and T. Hirai, J. Phys. Chem. Solids 61, 919 (2000).
[30] R. B. Song, T. Aizawa, and J. Q. Sun, "Synthesis of Mg2Si1−xSnx solid solutions as thermoelectric materials by bulk mechanical aloying and hot pressing," Materials Science and Engineering: B, vol. 136, no. 2-3, pp. 111-117, 2007, doi: 10.1016/j.mseb.2006.09.011.
[31] "LFA 457 MicroFlash." NETZSCH. https://analyzing testing.netzsch.com/en/products/thermal-diffusivity-and-conductivity/lfa-457-micro-flash (accessed.
[32] T. T. M. Pooria Gil , Bijan Ranjbar, "Differential scanning calorimetry techniques:applications in biology and nanoscience.," 2010.
[33] "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹https://www.techmaxasia.com/knowledge-detail/DSC-20210208/," 2021.
[34] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony teluride bulk aloys," Science, vol. 320, no. 5876, pp. 634-8, May 2 2008, doi: 10.1126/science.1156446.
[35] 羅聖全, "研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM."
[36] E. Board. "Scanning Electron Microscope (SEM)." Microscope Wiki. https://microscopewiki.com/scanning-electron-microscope/ (accessed June 18, 2023).
[37] "Use X-ray to see through the world of material atomic arrangement structure," National Applied Research Laboratories.
[38] "X-ray in National Taiwan University of Science and Technology, http://www- o.ntust.edu.tw/~ntustxrd/products.html," X-ray Diffraction Laboratory, National Taiwan University of Science and Technology.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明