博碩士論文 110521059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.116.62.106
姓名 黃宇詮(Yu-Cyuan Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用內切式載子收集層結構來增強太赫茲頻段輸出功率與響應度的近彈道單載子傳輸光電二極體
(Near-Ballistic Uni-Traveling-Carrier Photodiodes with Undercut Collector for Enhancements in THz Output Power and Responsivity)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們展示了一種新穎的近彈道單載子傳輸光電二極體(Near-Ballistic Uni-Traveling-Carrier Photodiode,簡稱NBUTC-PD)結構,該結構具有內切式的載子收集層。在內切式收集層結構中,由於吸收層的寬度更大,可以提高響應度、輸出射頻功率和飽和光電流。與主動區直徑3µm的元件相比,內切式收集層結構的元件(11µm)具有更高的響應度( 0.11 vs. 0.1 A/W )、更高的輸出功率( 0.4 vs. -2.4 dBm@165GHz )以及更高的飽和光電流( 9 vs. 7mA )。另外,內切式收集層的結構可以有效地降低接面電容,可以最大限度地減少因吸收層面積增加而導致的頻寬下降,與主動區直徑3µm的元件相比,內切式收集層結構的元件(11µm) 頻寬只降低了65 GHz (220 GHz 與 285 GHz)。總結來說,我們新提出的內切式的載子收集層結構能有效解決近彈道單載子傳輸光電二極體(NBUTC-PD)中,元件頻寬與元件輸出特性(輸出射頻功率、輸出光電流)之間的相互限制。
摘要(英) We demonstrate a novel Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD) structure with an undercut profile of collector layer. By using undercut collector structure in a InP based uni-traveling carrier photodiode (UTC-PD), it’s responsivity, output RF power and saturation photocurrent can be improved due to the larger width of p-type absorption region. Furthermore, the undercut profile in collector layer, can effectively reduce the junction capacitance and minimize the bandwidth degradation due to the increase of active area of absorption region. Higher responsivity (0.11 vs. 0.1A/W), output power (0.4 vs. -2.4 dBm@165GHz) and saturation photocurrent (9 vs. 7mA) of undercut collector device (11µm) as compared to those of references with miniaturized diameters (3µm) has been demonstrated. Compared with directly downscale device (3µm), undercut collector structure device (11µm) exhibit less bandwidth degradation (220GHz vs. 285GHz).
In conclusion, the demonstrated device structure can effectively overcome the trade-off between bandwidth and MMW saturation power (current) in THz photodiode.
關鍵字(中) ★ 近彈道單載子傳輸光電二極體
★ 內切式載子收集層
★ 選擇性濕蝕刻
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 序論 1
1.1光纖通訊的發展 1
1.2 光偵測器與其在毫米波通訊的應用 3
1.3 單載子傳輸光電二極體(UTC-PD)的特性探討 9
1.4 提升單載子光電二極體響應度的方法 11
1.5 元件的應用 16
1.6 論文動機與架構 21
第二章 單載子光偵測器設計 22
2.1 P-I-N光電二極體的原理與特性限制 22
2.2 P-I-N與單載子傳輸光電二極體的特性探討與比較 23
2.3 近彈道單載子傳輸光電二極體(NBUTC-PD)的優勢 26
2.4 具內切載子收集層的近彈道單載子傳輸光電二極體之磊晶設計與元件結構設計 29
2.5元件金屬襯墊(PAD)與覆晶貼合基板之結構設計 33
第三章 主動區直徑3µm的近彈道傳輸單載子傳輸光電二極體(NBUTC-PD)與具內切式載子收集層的近彈道單載子傳輸光電二極體(NBUTC-PD)之製程步驟 36
3.1主動區直徑3µm近彈道傳輸單載子傳輸光二極體製程 36
3.2 具內切式收集層的近彈道傳輸單載子傳輸光二極體製程 50
3.3 抗反射薄膜與元件覆晶晶圓貼合製程 68
第四章 主動區直徑3µm的近彈道傳輸單載子傳輸光電二極體與具內切式載子收集層的近彈道單載子傳輸光電二極體之元件量測結果與分析 71
4.1 直流響應度量測結果 72
4.2 Heterodyne-Beating 量測系統之架設 73
4.3 頻寬量測結果 76
4.4 S11反射係數量測結果 77
4.5 載子傳輸時間與RC限制頻率響應量測結果 79
4.6 高功率產生量測結果 81
4.7 綜合比較 84
4.8 元件熱阻探討 88
第五章 結論與未來研究方向 90
參考文獻 92
參考文獻 [1]https://electricalengineering123.com/fiber-optic-cable-structure-advantages/
[2] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. to, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[3] K. Hassan, M. Masarra, M. Zwingelstein, and I. Dayoub, ‘‘Channel estimation techniques for millimeter-wave communication systems: Achievements and challenges,’’ IEEE Open J. Commun. Soc., vol. 1,pp. 1336–1363, 2020.
[4] S. Gulkis, M. Allen, C. Backus, G. Beaudin, N. Biver, D. Bockelée-Morvan, J. Crovisier, D. Despois, P. Encrenaz, M. Frerking, M. Hofstadter,P. Hartogh, W. Ip, M. Janssen, L. Kamp, T. Koch, E. Lellouch,I. Mann, D. Muhleman, H. Rauer, P. Schloerb, and T. Spilker, “Remote sensing of a comet at millimeter and submillimeter wavelengths from an orbiting spacecraft,” Planet. Space Sci., vol. 55, no. 9, pp.1050–1057, Jun. 2007.
[5] S. Gulkis, S. Keihm, L. Kamp, C. Backus, M. Janssen, S. Lee, B.Davidsson, G. Beaudin, N. Biver, D. Bockelée-Morvan, J. Crovisier,P. Encrenaz, T. Encrenaz, P. Hartogh, M. Hofstadter, W. Ip,E. Lellouch,I. Mann, P. Schloerb, T. Spilker, and M. Frerking, “Millimeterand submillimeter measurements of asteroid (2867) steins during the rosetta flyby,” Planet. Space Sci., vol. 58, no. 9, pp. 1077–1087, Jul.2010.
[6]https://www.keysight.com/tw/zh/assets/3121-1515/technical-overviews/170GHz-220GHz-Broadband-Vector-Network-Analysis-Solution.pdf
[7] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul. 1999.
[8] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug. 2005.
[9] J.-M. Wun, H.-Y. Liu, Y.-L. Zeng , S.-D. Yang, C.-L. Pan, C.-B. Huang, and J.-W. Shi, “Photonic High-Power CW THz-Wave Generation by Using Flip-Chip Packaged Uni-Traveling Carrier Photodiode and Femtosecond Optical Pulse Generator,” IEEE/OSA Journal of Lightwave Technology, vol. 34, pp. 1387-1397, Feb., 2016.
[10] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni-traveling-Carrier Photodiodes for Terahertz Applications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 20, pp. 3804210, Nov.,/Dec., 2014.
[11] J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes under a 50 Ω Load for High-Power Performance,” IEEE Photon. Technol. Lett., vol. 24, pp. 533-535, April, 2012.
[12] E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds “Traveling-wave Uni-Traveling Carrier Photodiodes for continuous wave THz generation,” Optics Express, vol. 18, No. 11, pp. 11105-11110, May, 2010.
[13] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16, pp. 239-241, Jan. 2004.
[14] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes, Jr., and J.C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power” IEEE Photon. Technol. Lett, vol. 18, pp. 2526-2528, Dec. 2006.
[15] N. Duan, X. Wang, N. Li, H.-D. Liu, and Joe C. Campbell“ThermalAnalysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal Of Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006.
[16] J. Das, H. Oprins, H. Ji, A. Sarua, W. Ruythooren, J. Derluyn, M. Kuball, M. Germain, and G. Borghs “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Trans. On Electron Device, vol. 53, no. 11, pp. 2696-2700, Nov. 2006.
[17] https://www.applichem.com.tw/news-detail-2864581.html
[18] https://www.albisopto.com/
[19] T. Liu, Y. Huang, Q. Wei, K. Liu, X. Duan, and X. Ren, “Optimized uni-traveling carrier photodiode and mushroom-mesa structure for high-power and sub-terahertz bandwidth under zero- and low-bias operation,” Journal of Physics Communications, vol. 3, no. 9, p. 095004, Sep. 2019.
[20] https://www.youtube.com/watch?v=8M91t7rl130&t=890s
[21] L. A. Rusch and X. Guan, "Silicon Photonics for High-Speed 5G and Optical Networks," 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3.
[22]https://www.sharetechnote.com/html/Handbook_LTE_BeamForming.html
[23] S. Koenig et al., “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, no. 12, pp. 977-981, Dec, 2013.
[24] F.-M. Kuo , J.-W. Shi, “Remotely Up-Converted 20-Gbit /s Error-Free Wireless On–Off-Keying Data Transmission at W-Band Using an Ultra-Wideband Photonic Transmitter-Mixer.” IEEE Photonics Journal, vol. 3, no. 2, April ,2011.
[25] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, High-Speed, High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep. 2005.
[26] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Uni traveling Carrier Photodiodes at W-Band," IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
[27] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-Speed and High-Output InP–InGaAs Uni traveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004.
[28] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[29] T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron Devices, vol. 35, no. 4, pp. 401–404, Apr. 1988.
[30] 溫志閔「超高速單載子傳輸光偵測器和其在超寬頻帶的波導耦合式兆赫茲光子傳輸器之應用」,國立中央大學,博士論文,民國107年。
[31] T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Uni traveling carrier photodiodes for terahertz applications,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, pp. 79-88, Dec. 2014.
[32] J.-M. Wun, H.-Y. Liu, Y.-L. Zeng , S.-D. Yang, C.-L. Pan, C.-B. Huang, and J.-W. Shi, “Photonic High-Power CW THz-Wave Generation by Using Flip-Chip Packaged Uni-Traveling Carrier Photodiode and Femtosecond Optical Pulse Generator,” IEEE/OSA Journal of Lightwave Technology, vol. 34, pp. 1387-1397, Feb., 2016.
[33] J.-M. Wun, R.-L. Chao, Y.-W. Wang, Yi.H. Chen, and J.-W. Shi, “Type-II GaAs0.5Sb0.5/InP Uni-Traveling Carrier Photodiodes with Sub-THz Bandwidth and High-Power Performance under Zero-Bias Operation,” IEEE/OSA Journal of Lightwave Technology, vol. 35, pp. 711-716, Feb., 2017.
[34] Y. He, B. W. Liang, N. C. Tien, and C. W. Tu, “Selective Chemical Etching of InP over InAIAs,” J. Electrochem. Soc., Vol. 139, no. 7, pp. 2046-2048, 1992.
[35] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
[36] https://spie.org/news/6827-ultrafast-photodiodes-under-forward-bias-conditions?SSO=1
[37] 陳信瑲「具有高功率、超寬頻表現在W–頻段(75–110GHz)的光子傳輸器High–Power and Ultra–Wide Bandwidth Photonic Transmitter at W–band (75–110GHz)」,國立交通大學,博士論文,民國99年。
[38] W. Fawcett and G. Hill, “Temperature dependence of the velocity/field characteristic of electrons in InP,” Electron. Lett., vol. 11, no. 4, pp. 80-81, Feb. 1975.
[39] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
[40] J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication,” NPG Asia Materials, vol. 3, No. 2, pp. 41-48, April, 2011.
[41] J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun “Dynamic Analysis of High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical Interconnect across a Wide Optical Window (0.85 to 1.55 µm),” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 4, pp. 921-927, Feb., 2015.
[42] 王昱文「具有兆赫波頻寬、高輸出功率,使用GaAs0.5Sb0.5 / In0.53Ga0.47As II-型混合吸收層的超快速單載子傳輸光電二極體」,國立中央大學,碩士論文,民國106年。
[43] J. S. Morgan, et al., “Bias-Insensitive GaAsSb/InP CC-MUTC Photodiodes for mmWave generation up to 325 GHz”, Journal of Lightwave Technology, forthcoming publication, April, 2023.
[44] M. Grzeslo et al., “High saturation photocurrent THz waveguide-type MUTC-photodiodes reaching mW output power within the WR3. 4 band”, Optics Express, vol. 31, no. 4, pp. 6484-6498, 2023.
[45] Y. Tian, B. Xiong, C. Sun, Z. Hao, J. Wang, L. Wang, Y. Han, H. Li, L. Gan, and Y. Luo, “Ultrafast MUTC photodiodes over 200 GHz with high saturation power”, Optics Express, vol. 31, no. 15, pp. 23790-23800, 2023.
[46] J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 2, pp. 1-7, Mar, 2018.
[47] https://www.ioffe.ru/SVA/NSM/Semicond/InP/thermal.html
[48] G. R. Jaffe et al., “Measurements of the thermal resistivity of InAlAs, InGaAs, and InAlAs/InGaAs superlattices,” ACS Appl. Mater. Interfaces, vol. 11, no. 12, pp. 11970-11975, Feb, 2019.
[49] R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, Jr., C.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett., vol. 42, no. 3, pp. 181-182, Feb, 2006.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明