博碩士論文 109521186 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.133.111.183
姓名 陳之揚(Tzu-Yang Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以三五族單光子雪崩二極體自身能力之光子數解析偵測器特性研究
(Performance Study of Photon Number Resolving Detector Inherently using III-V Single Photon Avalanche Diodes)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 光子數解析 偵測 器( Photon Number Resolving Detector, PNRD)在光量子技術應用中 扮演著重要的角色。例如,將 PNRD應用於量子密鑰分發(Quantum Key Distribution, QKD)中可以防止光子數分裂 (Photon Number Splitting, PNS)攻擊,提升通信的安全性。通過對子系統進行光子數檢測並後選擇特定光子數模式,有助於生成非高斯態,促進容錯量子計算。在近紅外光通信中,常選擇基於InGaAs或Ge的單光子雪崩二極體( Single-Photon Avalanche Diode, SPAD),以實現單光子 靈敏 度。本論文研究了InGaAs/InAlAs SPAD和 InGaAs/InP SPAD作為 PNRD的 特性, 這兩種 SPAD的主要區別在於放大層所使用的材料。然而,每種材料都有其優點和缺點,如 InAlAs元件中較高的暗計數和InP元件 中較低 的崩潰機率, 這些因素可能 交 互 影響光子數解析能力。因此,本論文旨在分析這兩種元件的特性並進一步 探 討 它們的光子數解析能力。
本論文使用了我們自製的 InGaAs/InAlAs SPAD和 Princeton Lightwave的 InGaAs/InP SPAD。這些 元 件在閘 控 模式下運行, 所使用的 閘 控 頻率為104.7 MHz,脈衝寬度為 1.5 ns。為了 能分辨出 早期 觸發 微弱的崩潰訊號更採用了自差 分 (self-differencing)電路以消除電容 耦合訊 號 使用重複頻率為 26.2 MHz(閘 控 頻率的四分之一)的 1550 nm脈衝 雷射 作為光子源。我們證明了兩種 SPAD的光子數解析性能隨著單光子檢測效 率 Single Photon Detection Efficiency SPDE)的增加而提高。在各自最佳的 SPDE值下,Princeton Lightwave的 InGaAs/InP SPAD能夠解析 4個光子,而我們自製的InAlAs SPAD能夠解析 5個光子, 結果 表明我們自製的 InGaAs/InAlAs SPAD的光子數解析能力優於商用 SPAD。
摘要(英) Photon number resolving detector (PNRD) plays a crucial role in photonic quantum technology applications. For example, implementing PNRD to the applications of quantum key distribution (QKD) could prevent the photon number splitting (PNS) attack, enhancing the security of communication. By performing photon-number detection on a subsystem and postselecting a particular photon-number pattern are instrumental to the generation of non-Guassian states, facilitating fault-tolerant quantum computing. InGaAs-based or Ge-based single-photon avalanche diodes (SPADs) are commonly chosen for optical communication in the near infrared that demands single photon sensitivity. In this thesis, we study the performance of InGaAs/InAlAs SPAD and InGaAs/InP SPAD when they are served as PNRDs. For these two SPADs, the main difference is the material used for the multiplication layer. However, each material has its own advantages and drawbacks, such as higher dark counts in InAlAs-based devices and lower breakdown probability in InP-based devices. These factors might interactively affect the photon number resolving capability. Hence, the purpose of this thesis is to analyze the characteristics of these two devices and explore their photon number resolving capabilities.
The devices used in this thesis are our homemade InGaAs/InAlAs SPAD and a Princeton Lightwave InGaAs/InP SPAD. The devices are operated under gated mode with a gate frequency of 104.7 MHz and a pulse width of 1.5 ns. To sense the early onset of avalanche signal, a self-differencing circuit is further incorporated to eliminate capacitive signals. A 1550 nm pulsed laser with repetition rate of 26.2 MHz, 1/4th the gate frequency, is used as the photon source. We demonstrate that the PNR performance is elevated with increasing single photon detection efficiency (SPDE) for both SPADs. At their respective optimum SPDE, Princeton Lightwave InGaAs/InP SPAD is capable of resolving 4 photons, while our homemade InAlAs SPAD resolves 5 photons, indicating that the PNR capability of our homemade InGaAs/InAlAs SPAD outperforms that of a commercial SPAD.
關鍵字(中) ★ 單光子雪崩二極體
★ 光子數解析
★ 量子密鑰傳輸
關鍵字(英) ★ SPAD
★ PNR
★ QKD
論文目次 中文摘要 ............................................................................................................ i
ABSTRACT ...................................................................................................... iii
誌謝 ................................................................................................................... v
圖目錄 ............................................................................................................... x
表目錄 ............................................................................................................. xv
第一章 緒論...................................................................................................... 1
1.1 前言 ......................................................................................................... 1
1.2 研究動機與目的 ...................................................................................... 2
1.3 偵測器介紹與演進 .................................................................................. 3
1.3.1 光電倍增管(Photomultiplier Tube, PMT) .......................................... 3
1.3.2 光電二極體(Photodiode) ................................................................... 5
1.3.3 雪崩光電二極體(Avalanche Photodiode, APD) ................................ 7
1.4 光子數解析元件 .................................................................................... 10
1.4.1 光子數解析(Photon Number Resolving, PNR) ................................ 10
1.4.2 矽光電倍增管(Silicon Photomultipliers, SiPM) .............................. 11
1.4.3 超導奈米線單光子偵測器(Superconducting Nanowire Single Photon Detector, SNSPD ) ..................................................................................... 13
1.4.4 單光子雪崩二極體(Single Photon Avalanche Diode, SPAD) ......... 15
1.5 光子數解析應用 .................................................................................... 17
1.5.1 量子密鑰傳輸(Quantum Key Distribution, QKD) ........................... 17
1.5.2 量子計量學(Quantum Metrology) ................................................... 23
viii
第二章 文獻探討 ............................................................................................ 27
2.1 光子數解析技術(Photon number resolving technology) ........................ 27
2.1.1 空間複用(Spatial-Multiplexing)....................................................... 27
2.1.2 時間複用(Time-multiplexing) .......................................................... 30
2.1.3 自身能力(Inherent-Capability)......................................................... 31
2.2 材料特性 ............................................................................................... 36
第三章 單光子雪崩二極體操作原理及特性介紹 ......................................... 40
3.1 元件介紹 ............................................................................................... 40
3.1.1 二極體電流-電壓特性 ..................................................................... 40
3.1.2 崩潰機制.......................................................................................... 41
3.1.3 元件結構.......................................................................................... 43
3.2 元件操作電路 ........................................................................................ 46
3.2.1 自由運作模式電路(Free running mode circuit) ............................... 47
3.2.2 閘控模式電路(Gated mode circuit) ................................................. 47
3.2.3 自差分電路(Self-Differencing Circuit) ............................................ 48
3.3 元件特性參數 ........................................................................................ 49
3.3.1 暗計數(Dark Count Rate, DCR)....................................................... 50
3.3.2 單光子偵測效率(Single Photon Detection Efficiency, SPDE) ......... 53
3.3.3 光子數解析量測參數 ...................................................................... 55
第四章 量測方法與架構 ................................................................................ 57
4.1 降溫系統 ............................................................................................... 57
4.2 電壓與電流特性量測架構 .................................................................... 58
ix
4.3 暗計數量測架構 .................................................................................... 60
4.4 光計數量測架構 .................................................................................... 61
4.5 後脈衝效應量測架構 ............................................................................ 64
4.6 光子數解析量測架構 ............................................................................ 67
第五章 量測結果與分析 ................................................................................ 71
5.1 元件特性量測及結果分析 .................................................................... 73
5.1.1 電壓與電流量測 .............................................................................. 73
5.1.2 暗計數量測 ...................................................................................... 77
5.1.3 單光子偵測效率量測 ...................................................................... 79
5.1.4 後脈衝機率量測 .............................................................................. 84
5.2 光子數解析量測 .................................................................................... 87
第六章 結論與未來展望 ................................................................................ 99
參考文獻 ....................................................................................................... 101
附錄一 ........................................................................................................... 109
附錄二 ........................................................................................................... 114
附錄三 ........................................................................................................... 117
參考文獻 [1] H. Hertz: Ann. Phys, 31, 983, 1887.
[2] W. Hallwachs: Ann. Phys, 33, 301, 1888.
[3] L. Austin and H. Stark: Ann, Phys, 9, 271, 1902.
[4] Wikipedia, Secondary Emission. https://www.wikiwand.com/en/Secondary_emission
[5] L. Koller: Phys. Rev., 36, 1639, 1930.
[6] J. Rajchman and E.W. Pike, "Electrostatic Focusing in Secondary Emission Multipliers," RCA Technical Report TR-362, September 9, 1937.
[7] Photodiode https://enlitechnology.com/zh-hant/blog-zh-hant/pd-zh-hant/photodetector-01/
[8] S.O. Kasap, "Optoelectronics and photonics: principles and practices," Prentice Hall, 2001.
[9] Johnson, K. M., "Photodiode signal enhancement effect at avalanche breakdown voltage," IEEE transactions on electron devices, vol.14, no. 5, 1967.
[10] K. Nishida, K. Taguchi and Y. Matsumoto, "InGaAsP heterostructure avalanche photodiodes with high avalanche gain", Appl. Phys. Lett. 35, pp. 251-253, 1979.
[11] J. N. Hollenhorst, "High frequency performance of planar InGaAs/InP APD’s," Proc. SPZE, vol. 995, pp. 53-60, 1990.
[12] L. E. Tarof et al., "Planar InP/InGaAs avalanche photodetectors with partial charge in the device periphery," Appl. Phys. Lett., vol. 57, 1990.
[13] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt., vol. 35, pp. 1956-1976, 1996.
[14] Fiber Attenuation. https://www.cables-solutions.com/
[15] Knill, E., Laflamme, R. & Milburn, G, "A scheme for efficient quantum computation with linear optics," Nature, 409, pp. 46–52, 2001.
[16] G. Brida and I. Berchera, "Experimental realization of sub-shot-noise quantum imaging," Nature Photon 4, pp. 227–230, 2010.
[17] Marco Genovese, "Research on hidden variable theories: A review of recent progresses," Physics Reports, vol. 413, Issue 6, 2005.
[18] R. Hadfield, "Single-photon detectors for optical quantum information applications," Nature Photon 3, pp. 696–705, 2009.
[19] Enrico Pomarico, Bruno Sanguinetti, Rob Thew and Hugo Zbinden, "Room temperature photon number resolving detector for infared wavelengths," Opt. Express 18, pp. 10750-10759, 2010.
[20] SiPM circuit. https://hub.hamamatsu.com/
[21] Yokota, H. Fukasawa, A. Hirano, M. Ide, "T. Low-Light Photodetectors for Fluorescence Microscopy," Appl. Sci., 2021.
[22] Jinhou Lin, Ying Sun, Wen Wu, Kun Huang, Yan Liang, Ming Yan, and Heping Zeng, "High-speed photon-number-resolving detection via a GHz-gated SiPM," Opt. Express 30, pp. 7501-7510, 2022.
[23] N. Anfimov et al., "Study of silicon photomultiplier performance at different temperatures," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 997, 2021.
[24] L. Zhang et al., "Quasi-Gated Superconducting Nanowire Single-Photon Detector," IEEE Transactions on Applied Superconductivity, vol. 27, no. 2, pp. 1-6, March, 2017.
[25] A. E. Lita, D. V. Reddy, V. B. Verma, R. P. Mirin and S. W. Nam, "Development of Superconducting Single-Photon and Photon-Number Resolving Detectors for Quantum Applications," Journal of Lightwave Technology, vol. 40, no. 23, pp. 7578-7597, 1 Dec.1, 2022.
[26] K.M. Rosfjord, J.K.W. Yang, E.A. Dauler, A.J. Kerman, V. Anant, B.M. Voronov and K.K. Berggren, "Nanowire Single-Photon Detector with an Integrated Optical Cavity and Anti-Reflection Coating," Opt Express, pp. 527-534, 2006.
[27] Operation principle of SNSPD
https://singlequantum.com/ technology/snspd/
[28] Francesco Mattioli, Zili Zhou, Alessandro Gaggero, Rosalinda Gaudio, Roberto Leoni, and Andrea Fiore, "Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires," Opt. Express 24, pp. 9067-9076, 2016.
[29] C. H. Bennett and G. Brassard, "Quantum cryptography: pubic key distributionand coin tossing," Proc. IEEE Int. Conf. Comput., Syst. Signal Process., Bangalore, India, pp. 175–179, Dec., 1984.
[30] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptol., vol. 5, no. 1, pp. 3–28, Jan., 1992.
[31] S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche Photodiodes and Quenching Circuits for Single-Photon Detection," Appl. Opt., 35, pp. 1956-1976, 1996.
[32] Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 2007.
[33] Kardynał, B., Yuan, Z. & Shields, A., "An avalanche‐photodiode-based photon-number-resolving detector," Nature Photon 2, pp. 425–428, 2008.
[34] Eisaman et al., "Invited Review Article: Single-photon sources and detectors," The Review of scientific instruments, 2011.
[35] R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, et al., "A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements," Proc. SPIE, vol. 5086, pp. 1-15, 2003.
[36] S. Verghese et al., "Arrays of InP-based Avalanche Photodiodes for Photon Counting," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 870-886, July-aug., 2007.
[37] B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette and R. D. Younger, "Large-Format Geiger-Mode Avalanche Photodiode Arrays and Readout Circuits," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-10, March-April, 2018.
[38] A. I. Nurhadi and N. R. Syambas, "Quantum Key Distribution (QKD) Protocols: A Survey," 2018 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, Bali, Indonesia, pp. 1-5, 2018.
[39] Ekert, "Quantum cryptography based on Bell′s theorem," Physical Review Letters, vol. 67, no. 6, pp. 661 – 663, August, 1991.
[40] Gisin, N., Ribordy, G., Tittel, W., Zbinden, H., "Quantum Cryptography," Reviews of Modern Physics, vol. 74, pp. 146 – 195, January, 2002.
[41] Brassard, Gilles, Lutkenhaus, Norbert, Mor, Tal, Sanders, Barry C, " Limitations on Practical Quantum Cryptography," Phys. Rev. Lett., pp. 1330-1333, 2000.
[42] M. Zavala and B. Barán, "QKD BB84. A Taxonomy," 2021 XLVII Latin American Computing Conference, Cartago, pp. 1-10, 2021.
[43] O. Amer, V. Garg and W. O. Krawec, "An Introduction to Practical Quantum Key Distribution," IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 3, pp. 30-55, March, 2021.
[44] Martin von Helversen, Marco Schmidt, Manuel Gschrey, Jan-Hindrik Schulze, André Strittmatter, Sven Rodt, Jörn Beyer, Tobias Heindel and Stephan Reitzenstein, "Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors," New Journal of Physics, vol. 21, March, 2019.
[45] J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, " Observing the quantum behavior of light in an undergraduate laboratory," American Journal of Physics, vol. 72, No. 9, Sept., 2004.
[46] Rambach and M. Narrowband, "Single Photons for Light-Matter Interfaces, " The University of Queensland, 2017.
[47] R. Hanbury Brown and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature, vol. 177, pp. 27-29, 1956.
[48] H. J Kimble, M. Dagenais, and L. Mandel, "Photon Antibunching in Resonance Fluorescence," Physical Review Letters, vol. 39, pp. 691–695, 1977.
[49] Hong CK, Ou ZY and Mandel L, "Measurement of subpicosecond time intervals between two photons by interference," Phys Rev Lett, Nov 2, pp. 2044-2046, 1987.
[50] D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Physical Review Letters, vol. 25, pp. 84-87, 1970.
[51] Kardynał B, Yuan Z and Shields A, "An avalanche‐photodiode-based photon-number-resolving detector," Nature Photon 2, 425–428, 2008.
[52] M. Akiba, K. Inagaki, and K. Tsujino, "Photon number resolving SiPM detector with 1 GHz count rate," Opt. Express 20, pp. 2779-2788, 2012.
[53] B. Zhang et al., "Approaching linear photon-number resolution with superconductor nanowire array," Appl. Phys. B, 126, 59, 2020.
[54] Ivo Pietro Degiovanni et al., "Experimental Methods in the Physical Sciences - Chapter 7 Hybrid Detectors," Academic Press, vol. 45, 2013.
[55] Chen, Xiuliang et al., "Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode," Scientific Reports, 44600, 2017.
[56] N. Namekata, S. Sasamori, and S. Inoue, "800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Express 14, pp. 10043-10049, 2006.
[57] Alessandro Restelli, Joshua C. Bienfang and Alan L. Migdall, "Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz," Appl. Phys. Lett. 8, April, 2013.
[58] Guang Wu, Yi Jian, E Wu, and Heping Zeng, "Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode," Opt. Express 17, pp.18782-18787, 2009.
[59] Kardynał B, Yuan Z and Shields A, "An avalanche‐photodiode-based photon-number-resolving detector," Nature Photon 2, pp. 425–428, 2008.
[60] Xiuliang Chen, E Wu, Guang Wu and Heping Zeng, "Low-noise high-speed InGaAs/InP-based single-photon detector," Opt. Express 18, pp. 7010-7018, 2010.
[61] Xiuliang Chen, E Wu, Lilin Xu, Yan Liang, Guang Wu and Heping Zeng, "Photon-number-resolving performance of the InGaAs/InP avalanche photodiode with short gates," Applied Physics Letters 95, 131118, 2009.
[62] C. Merckling et al., "Monolithic integration of III-V semiconductors by selective area growth on Si(001) substrate: Epitaxy challenges & applications, " ECS Transactions, vol. 66, pp. 107 – 116, 2015.
[63] B. Jalali, M. Paniccia and G. Reed, "Silicon photonics," IEEE Photon. Technol. Lett., vol. 7, no. 12, pp. 4600-4615, June, 2006.
[64] D. A. Humphreys and R. J. King, "Measurement of absorption coefficients of Ga0.47 In0.53As over the wavelength range 1.0–1.7 μm," Electron. Lett., vol. 21, no. 25/26, pp. 1187–1189, Dec. 1985.
[65] J. P. R. David and C. H. Tan, "Material Considerations for Avalanche Photodiodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 4, pp. 998-1009, July-aug. 2008.
[66] Y. L. Goh, D. J. Massey, A. J. R. Marshall, J. S. Ng, C. H. Tan, W. K. Ng, G. J. Rees, M. Hopkinson, J. P. R. David, and S. K. Jones, "Avalanche multiplication in InAlAs," IEEE Trans. Electron. Device., vol. 54, no. 1, pp. 11–16, Jan. 2007.
[67] L. J. J. Tan et al., "Temperature Dependence of Avalanche Breakdown in InP and InAlAs," IEEE Journal of Quantum Electronics, vol. 46, no. 8, pp. 1153-1157, Aug. 2010.
[68] B. Guo et al., "Impact Ionization Coefficients of Digital Alloy and Random Alloy Al0.85Ga0.15As0.56Sb0.44 in a Wide Electric Field Range," Journal of Lightwave Technology, vol. 40, no. 14, pp. 4758-4764, July, 2022.
[69] D. A. Ramirez et al., "Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes," IEEE Journal of Quantum Electronics, vol. 42, no. 2, pp. 137-145, Feb., 2006.
[70] Acerbi F, Anti M, Tosi A, Zappa F, "Design criteria for InGaAs/InP single-photon avalanche diode," IEEE Photonics J, 2013.
[71] J. C. Campbell, W. S. Holden and B. L. Kasper, "High-speed InP/InGaAsP/InGaAs avalanche photodiodes," 1983 International Electron Devices Meeting, Washington, pp. 464-467, 1983.
[72] F. Acerbi, M. Anti, A. Tosi and F. Zappa, "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode," IEEE Photonics Journal, vol. 5, no. 2, pp. 6800209-6800209, April., 2013.
[73] Jun Zhang, Mark A Itzler, Hugo Zbinden, and Jian-Wei Pan, " Advances in InGaAs/InP single-photon detector systems for quantum commun- ication," Light Sci Appl 4, 2015.
[74] Hui Wang, Xiaohong Yang, Rui Wang, Tingting He, and Kaibao Liu, "Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization," Opt. Express 28, pp. 16211-16229, 2020.
[75] O. Wu, W. Kan, J. Shi and Y. Lee, "High Efficiency InGaAs/lnAlAs Single-Photon Detector Based on Self-Differencing Technique," 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), Toyama, Japan, pp. 01-03, 2022.
[76] J. Zhang et al, "Advances in InGaAs/InP single-photon detector systems for quantum communication," Light Sci Appl 4, 2015.
[77] J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler and X. Jiang, "Common-Mode Cancellation in Sinusoidal Gating With Balanced InGaAs/InP Single Photon Avalanche Diodes," IEEE Journal of Quantum Electronics, vol. 48, no. 12, pp. 1505-1511, 2012.
[78] Dengkuan Liu, Lixing You, Yuhao He, Chaolin Lv, Sijing Chen, Ling Zhang, Zhen Wang, and Xiaoming Xie, "Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system," J. Opt. Soc. Am. B 31, pp. 816-820, 2014.
[79] D. Achilles and C. Silberhorn, "Photon number resolving detection using time-multiplexing," Journal of Modern Optics, 51, pp.1499-1515, 2004.
[80] L. Lolli, E. Taralli and M. Rajteri, "Ti/Au TES to discriminate single photons," J. Low Temp. Phys, vol. 167, pp. 803-808, 2012.
指導教授 許晉瑋 李依珊(Jin-Wei Shi Yi-Shan Lee) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明