參考文獻 |
[1] 2030 雙語國家政策發展藍圖. https://www.ey.gov.tw/Page/448DE008087A1971/b7a931c4-c902-4992-a00c-7d1b87f46cea, 2018.
[2] Sebastian Wollny, Jan Schneider, Daniele Di Mitri, Joshua Weidlich, MarcRittberger, and Hendrik Drachsler. Are we there yet? - a systematic literaturereview on chatbots in education. Frontiers in Artificial Intelligence, 4, 2021.
[3] José Quiroga Pérez, Thanasis Daradoumis, and Joan Manuel Marquès Puig. Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6):1549–1565, 2020.
[4] Chen-Chung Liu, Mo-Gang Liao, Chia-Hui Chang, and Hung-Ming Lin. An analysis of children’interaction with an ai chatbot and its impact on their interest in reading. Computers & Education, 189:104576, 2022.
[5] Seong Yeub Chu and Deok Gi. Min. Development of an ai chatbot-based teaching model for english picture book retelling activities. Modern English Education, 22(4):37–50, 2021.
[6] Wei-Nan Zhang, Zhigang Chen, Wanxiang Che, Guoping Hu, and Ting Liu. The first evaluation of chinese human-computer dialogue technology, 2019.
[7] Berkeley R Andrus, Yeganeh Nasiri, Shilong Cui, Benjamin Cullen, and Nancy Fulda. Enhanced story comprehension for large language models through dynamic document-based knowledge graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 36(10):10436–10444, Jun. 2022.
[8] Zheng Zhang, Ying Xu, Yanhao Wang, Bingsheng Yao, Daniel Ritchie, Tongshuang Wu, Mo Yu, Dakuo Wang, and Toby Jia-Jun Li. Storybuddy: A human-ai collaborative chatbot for parent-child interactive storytelling with flexible parental involvement. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[9] Guangxuan Xu, Paulina Toro Isaza, Moshi Li, Akintoye Oloko, Bingsheng Yao, Cassia Sanctos, Aminat Adebiyi, Yufang Hou, Nanyun Peng, and Dakuo Wang. Nece: Narrative event chain extraction toolkit, 2023.
[10] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Leveraging linguistic structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 344–354, Beijing, China, July 2015. Association for Computational Linguistics.
[11] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(1), jan 2020.
[12] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China, November 2019. Association for Computational Linguistics.
[13] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
[14] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
[15] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, Nov 2019.
[16] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning, 2019.
[17] Alexander Zai and Brandon Brown. Deep Reinforcement Learning in Action. Manning Publications Co., 2020.
[18] Iulian V. Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Rajeshwar, Alexandre de Brebisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent Michalski, Alexandre Nguyen, Joelle Pineau, and Yoshua Bengio. A deep reinforcement learning chatbot, 2017.
[19] 陳臆玄. 應用強化式學習於多面向對話回應模組之研究. 碩士論文, 國立中央大學, 2022.
[20] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. The Stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics (ACL) System Demonstrations, pages 55–60, 2014.
[21] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. Stanza: A Python natural language processing toolkit for many human languages. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 2020.
[22] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Chambers, Mihai Surdeanu, Dan Jurafsky, and Christopher Manning. A multi-pass sieve for coreference resolution. In Empirical Methods in Natural Language Processing (EMNLP), 2010.
[23] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, and Dan Jurafsky. Stanford’s multi-pass sieve coreference resolution system at the conll-2011 shared task. In Conference on Natural Language Learning (CoNLL) Shared Task, 2011.
[24] Marta Recasens, Marie-Catherine de Marneffe, and Christopher Potts. The life and death of discourse entities: Identifying singleton mentions. In North American Association for Computational Linguistics (NAACL), 2013.
[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.
[26] Ying Xu, Dakuo Wang, Mo Yu, Daniel Ritchie, Bingsheng Yao, Tongshuang Wu, Zheng Zhang, Toby Li, Nora Bradford, Branda Sun, Tran Hoang, Yisi Sang, Yufang Hou, Xiaojuan Ma, Diyi Yang, Nanyun Peng, Zhou Yu, and Mark Warschauer. Fantastic questions and where to find them: FairytaleQA – an authentic dataset for narrative comprehension. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 447–460, Dublin, Ireland, May 2022. Association for Computational Linguistics.
[27] Christian Di Maio and Giacomo Nunziati. Mariorossi/t5-base-finetunedquestion-answering (huggingface). https://huggingface.co/MaRiOrOsSi/t5-base-finetuned-question-answering. |