博碩士論文 110521078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:3.135.249.11
姓名 孫子翔(Tzu-Shiang Sun)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用多項式派翠類神經網路於高效能同步磁阻馬達位置驅動系統之智慧型步階回歸控制
(Development of High-Performance Synchronous Reluctance Motor Position Servo Drive Using Intelligent Backstepping Control)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究目的在創建一個優化的同步磁阻馬達伺服驅動系統,通過使用具有智慧型步階回歸控制功能的多項式派翠模糊類神經網路來改變同步磁阻馬達固有的非線性和時變控制特性 本研究首先介紹了一個 ANSYS Maxwell-2D 動態模型,其中包含每安培最大扭矩控制的同步磁阻馬達伺服驅動器。建構查表法以組成有限元分析的結果,以生成每安培最大轉矩控制的直軸電流命令。隨後,本研究設計了一個步階回歸 控制系統來跟踪位置參考命令。在實際應用上步階回歸控制的設計非常複雜,因為事先無法獲得詳細的系統動態參數,包括同步磁阻馬達伺服驅動系統的不確定項 。因此這項研究明,多項式派翠模糊類神經網路可以作為理想步階回歸控制的近似優化來解決其現有的問題。此外,本研究修改了自適應補償器以主動調整多項式派翠模糊神經網路的潛在計算偏差。使用生成多項式派翠模糊類神經網路在線學習算法的李亞普諾夫穩定性方法可確保系統的漸近穩定性。最後,實驗提供了一些結果來驗證所提出的智慧型步階回歸多項式派翠模糊類神經網路控制的同步磁阻馬達伺服驅動器其有效性和強健性。
摘要(英) This study aims to create an optimized synchronous reluctance motor (SynRM) servo drive system to alter the inherent nonlinear and time-varying control characteristics of the SynRM by using an intelligent backstepping control polynomial Petri fuzzy neural network (IBSCPPFNN) that features an intelligent backstepping control. This study first introduces an ANSYS Maxwell-2D dynamic model that contains a maximum torque per ampere (MTPA) controlled SynRM servo drive. A lookup table (LUT) is built to compose of the finite element analysis (FEA) results to generate direct axis current command of the MTPA. Subsequently, this study designs a backstepping control (BSC) system to track the position reference command. Creating a working BSC for practical applications is quite complex because the detailed system dynamics, which includes the unpredictability of the SynRM servo drive system, is not available beforehand. Thus, this study suggests that a polynomial Petri fuzzy neural network (PPFNN) can act as a close substitute for the ideal BSC to resolve its existing complications. Furthermore, this study modifies an adaptive compensator to proactively adjust for the potential calculated deviance of the PPFNN. Asymptotical stability is assured by using the Lyapunov stability method, which generates the PPFNN’s online learning algorithms. Finally, some experimental results are provided to verify the effective and robust qualities of the suggested IBSCPPFNN controlled SynRM servo drive.
關鍵字(中) ★ 同步磁阻馬達
★ 每安培最大轉矩控制
★ 有限元素分析法
★ 步階回歸控制
★ 智慧型步階回歸多項式派翠模糊類神經網路控制
關鍵字(英) ★ Synchronous Reluctance motor (SynRM)
★ Maximum torque per ampere (MTPA)
★ Finite element analysis (FEA)
★ Backstepping control (BSC)
★ Polynomial Petri fuzzy neural network (PPFNN)
論文目次 摘要. I
Abstract VI
目錄 …………………………………………………………………..VIII
圖目錄 XI
表目錄 XVII
第一章 緒論 18
1.1 研究動機與目的 18
1.2 文獻回顧 24
1.3 論文貢獻 27
1.4 論文大綱 28
第二章 同步磁阻馬達驅動系統之控制板介紹 29
2.1 前言 29
2.2 TMS320F28075數位訊號處理器簡介 32
2.3 以DSP為基礎的同步磁阻馬達控制驅動系統 34
2.4 TMS320F28075 DSP 控制板與其電路 35
2.5 輸入/輸出板 36
2.6 外部負載控制電路 37
第三章 同步磁阻馬達驅動系統 40
3.1 前言 40
3.2 同步磁阻馬達 42
3.3 座標轉換之電壓及磁阻轉矩方程式 45
3.4 同步磁阻馬達其對位方式 50
3.5 建立同步磁阻馬達有限元素分析模型 52
3.5.1 建立同步磁組馬達有限元素分析模型 52
3.5.2 Maxwell 2D 模型建立同步磁阻馬達 53
3.5.3 ANSYS功能設定 56
3.5.4 同步磁阻馬達飽和現象 61
3.5.5 電感與電流之變化關係 62
3.6 同步磁阻馬達控制系統 63
3.6.1 傳統PI控制與有限元素分析之每安培最大轉矩 63
3.6.2 速度比例積分控制器設計 68
3.6.3 步階回歸控制系統與智慧型步階回歸控制系統 70
第四章 步階回歸位置控制 74
4.1 前言 74
4.2 步階回歸位置控制系統 75
4.2.1 步階回歸位置控制 75
4.2.2 步階回歸位置控制穩定性證明 77
第五章 同步磁阻馬達智慧型步階回歸控制 79
5.1 前言 79
5.2 多項式派翠類神經網路之架構 80
5.3 多項式派翠類神經網路之穩定性分析 83
第六章 Simplorer分析與模擬結果 88
6.1 簡介 88
6.2 Simplorer建模和應用 89
6.2.1 ECE簡介與建模設定 89
6.2.2 Simplorer與ECE設定 93
6.2.3 Simplorer與C語言的聯合分析 94
6.3 控制系統於Simplorer分析之模擬結果 96
6.3.1 命令為二階方波於Simplorer分析結果 98
6.3.2 命令為正弦波於Simplorer分析結果 104
第七章 實驗結果與討論 110
7.1 前言 110
7.2 實驗結果 113
7.2.1 命令為二階方波之結果 113
7.2.2 命令為正弦波之結果 120
7.3 實驗結果討論 124
7.4 效率以及頻寬量測 126
第八章 結論與未來展望 133
8.1 結論 133
8.2 未來展望 134
參考文獻 135
作者簡歷 146
參考文獻 [1]P. Waide and C. U. Brunner, “Energy-Efficiency policy opportunities for electric motor-drive systems,” Paris, France: International Energy Agency, 2011.
[2]Robles, Endika, et al. “Advanced power inverter topologies and modulation techniques for common-mode voltage elimination in electric motor drive systems.” Renewable and Sustainable Energy Reviews140 (2021): 110746.
[3]黃雅琪,「永磁與磁阻馬達市場發展機會與挑戰」,機械工業雜誌,415期,2017年10月號。
[4]A. T. D. Almeida, “Electric motors and variable speed drives efficiency adjusting MEPS to technology developments,” Motor Summit Zurich, 11/12, Oct. 2016.
[5]經濟部能源局,「急起直追,2016年與全球先進國家同步」,能源報導-封面故事三,2014年10月號。
[6]M. Doppelbauer, “Update on IEC motor and converter standards,” 6th Int. Motor Summit for Energy Efficiency powered by Impact Energy, Oct. 2016.
[7]F. J. W. Barnard, W. T. Villet, and M. J. Kamper, “Hybrid active-flux and arbitrary injection position sensorless control of reluctance synchronous machines,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3899–3906, Sept./Oct. 2015.
[8]W. T. Villet and M. J. Kamper, “Variable-gear EV reluctance synchronous motor drives–an evaluation of rotor structures for position-sensorless control,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5732–5740, Oct. 2014.
[9]I. H. Lin, M. F. Hsieh, H. F. Kuo, and M. C. Tsai, “Improved accuracy for performance evaluation of synchronous reluctance motor,” IEEE Trans. Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015.
[10]M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030–3040, Jul./Aug. 2015.
[11]J. Li and K. Wang, “A novel spoke-type PM machine employing asymmetric modular consequent-pole rotor, ” IEEE/ASME Trans. Mechatronics, vol. 24, no. 5, pp. 2182-2192, Oct. 2019.
[12]T. Senjyu, T. Shingaki, and K. Uezato, “Sensorless vector control of synchronous reluctance motors with disturbance torque observer,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 402–407, Apr. 2001.
[13]“ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the european hpc infrastructure workshop, Mar. 2017.
[14]F. N. Isaac, A. A. Arkadan and A. El-Antably, “Characterization of axially 171 laminated anisotropic-rotor synchronous reluctance motors,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 506-611, Sep 1999.
[15]J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450-456, Jun. 2010.
[16]S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[17]I. Boldea, L. N. Tutelea and A. A. Popa, “Reluctance synchronous and flux-modulation machines designs: recent progress, ” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 2, pp. 1683-1702, April 2022.
[18]C. Oprea, A. Dziechciarz, and C. Martis, “Comparative analysis of different synchronous reluctance motor topologies,” Proc. 2015 IEEE 15th Int. Conf. Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1904–1909.
[19]A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[20]A. Varshney, U. Sharma, and B.Singh, “Adaptive d-Axis current control of RSyM for photovoltaic water pumping incorporating cross saturation,” IEEE Trans Ind. Informat., vol. 16, no. 10, pp. 6487–6498, Jan. 2020
[21]N. Bedetti, S. Calligaro and R. Petrella, "Stand-Still Self-Identification of Flux Characteristics for Synchronous Reluctance Machines Using Novel Saturation Approximating Function and Multiple Linear Regression," IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3083-3092, Jul./-Aug. 2016.
[22]C. Li, D. Xu, and G. Wang, “High efficiency remanufacturing of induction motors with interior permanent-magnet rotors and synchronous-reluctance rotors,” in Proc. IEEE Transp. Electrif. Conf. Expo, Asia-Pac., 2017, pp. 1–6.
[23]C. Li, G. Wang, G. Zhang, N. Zhao and D. Xu, "Adaptive Pseudorandom High-Frequency Square-Wave Voltage Injection Based Sensorless Control for SynRM Drives," IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3200-3210, Mar. 2021.
[24]K. B. Tawfiq, M. N. Ibrahim and P. Sergeant, “An enhanced fault-tolerant control of a five-phase synchronous reluctance motor fed from a three-to-five-phase matrix converter,” IEEE Trans. Emerg. Sel. Topics Power Electron., to be published, 2022.
[25]F. Fernandez-Bernal, A. Garcia-Cerrada, and R. Faure, “Efficient control of reluctance synchronous machines,” in Proc. 24th Annu. Conf. IEEE Ind. Electron. Soc., vol. 2, pp. 923–928, Aug./Sep. 1998.
[26]M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York, NY, USA: Academic, 2002.
[27]H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[28]S. Bolognani, L. Peretti and M. Zigliotto, "Online MTPA Control Strategy for DTC Synchronous-Reluctance-Motor Drives," IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, Jan. 2011.
[29]K. Li and Y. Wang, "Maximum Torque Per Ampere (MTPA) Control for IPMSM Drives Based on a Variable-Equivalent-Parameter MTPA Control Law," IEEE Trans. Power Electron., vol. 34, no. 7, pp. 7092-7102, Jul. 2019.
[30]C. H. Lin, “Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive,” IET Electr. Power Appl., vol. 151, no. 6, pp. 711–724, Nov. 2004.
[31]S. Chen, H. Chiang, T. Liu, and C. Chang, "Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control," IEEE/ASME Trans. Mechatronics, vol. 24, no. 2, pp. 741-752, Apr. 2019.
[32]Z. Zhang and Z. Yan, "An Adaptive Fuzzy Recurrent Neural Network for Solving the Nonrepetitive Motion Problem of Redundant Robot Manipulators," IEEE Trans. Fuzzy Syst., vol. 28, no. 4, pp. 684-691, Apr.2020.
[33]L. A. M. Riascos, F. G. Cozman, and P. E. Miyagi, ‘‘Detection and treatment of faults in automated machines based on Petri nets and Bayesian networks,’’ in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2003, pp. 729–734.
[34]T. Nishi and Y. Tanaka, ‘‘Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 42, no. 5, pp. 1230–1243, Sep. 2012.
[35]Y. Du, L. Qi and M. Zhou, "Analysis and Application of Logical Petri Nets to E-Commerce Systems," IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 44, no. 4, pp. 468-481, Apr. 2014.
[36]K. H. Tan and T. Tseng, “Seamless switching and grid reconnection of microgrid using Petri recurrent wavelet fuzzy neural network,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11847–11861, Oct. 2021.
[37]R. Davidrajuh, "Extracting Petri Modules From Large and Legacy Petri Net Models," IEEE Access, vol. 8, pp. 156539-156556, 2020.
[38]A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE Trans. Syst., Man, Cybern., vol. SMC-1, no. 4, pp. 364–378, Oct. 1971.
[39]S. Oh, W. Pedrycz, and B. Park, “Polynomial neural networks architecture: Analysis and design,” Comput. Electr. Eng., vol. 29, no. 6, pp. 703–725, Aug. 2003.
[40]W. Huang, S. K Oh, and W. Pedrycz, “Fuzzy wavelet polynomial neural networks: Analysis and design,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1329–1341, Oct. 2017.
[41]Z. Wang, S. K. Oh, E. -H. Kim, Z. Fu and W. Pedrycz, "Hierarchically Reorganized Multi-Layer Fuzzy Neural Networks Architecture Driven With the Aid of Node Selection Strategies and Structural Network Optimization," IEEE Access, vol. 10, pp. 7772-7792, 2022.
[42]A. Yousefi-Talouki, P. Pescetto and G. Pellegrino, "Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA, and Flux Weakening," IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598-3608, Jul./-Aug. 2017.
[43]A. Dianov, F. Tinazzi, S. Calligaro and S. Bolognani, "Review and Classification of MTPA Control Algorithms for Synchronous Motors," IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3990-4007, April 2022.
[44]H. Kim, Y. Lee, S. Sul, J. Yu and J. Oh, "Online MTPA Control of IPMSM Based on Robust Numerical Optimization Technique," IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3736-3746, Jul./-Aug. 2019.
[45]A. Consoli, G. Scarcella, G. Scelba and A. Testa, "Steady-State and Transient Operation of IPMSMs Under Maximum-Torque-per-Ampere Control," IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 121-129, Jan./-Feb. 2010.
[46]F. J. Lin, M. Huang, S. Chen, C. Hsu and C. Liang, "Adaptive Backstepping Control for Synchronous Reluctance Motor Based on Intelligent Current Angle Control," IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465-7479, Jul. 2020.
[47]F. J. Lin, S. Chen, and C. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[48]TMS320F2807x Microcontrollers Technical Ref Manual, Texas Instruments. 檢自:
https://www.ti.com/product/TMS320F28075#tech-docs?HQS=ti-null-null-verifimanuf_df-manu-pf-octopart-wwe

[49]許哲瑋,“同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制”,碩士論文,國立中央大學電機系,民國一百零八年。
[50]TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments. 檢自:
https://www.ti.com/product/TMS320F28075#tech-docs?HQS=ti-null-null-verifimanuf_df-manu-pf-octopart-wwe
[51]黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”,碩士論文,國立中央大學電機系,民國一百零六年。
[52]吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文, 國立台北科技大學電機工程系,民國一百零五年。
[53]Bimal K. Bose, “Modern Power Electronics and AC Drives” Oct. 2001.
[54]P. Pillay, R. G. Haarley, and E. J. Odendal, “A comparison between star and delta connected induction motors when supplied by current source inverters,” Electric Power Systems Research., vol. 8, no. 1, pp. 41–51, Oct. 1984.
[55]Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[56]S. Foti et al, “Rotor position error compensation in sensorless synchronous reluctance motor drives,” IEEE Trans. Power Electron., vol 37, no. 4, pp.4442-4452, Apr. 2022
[57]M. Y. Wei and T. H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644– 3657, Sep. 2013.
[58]H. Parveen, U. Sharma, and B. Singh, “Battery supported solar water pumping system with adaptive feed-forward current estimation,” IEEE Trans. Energy Convers., to be published, 2022.
[59]E. Daryabeigi, A. Mirzaei, H. A. Zarchi, and S. Vaez-Zadeh, “Enhanced emotional and speed deviation control of synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 604–612, Jun. 2019.
[60]ZEKIC, Josip. Modeling and analysis of SynRM for hybrid electric vehicle application. 2016. Master′s Thesis.
[61]陳世剛, “高性能同步磁阻馬達驅動系統之寬速度範圍控制器發展”,博士論文,國立中央大學電機系,民國一百零九年。
[62]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[63]F. J. Lin, S. G. Chen, M. S. Huang, C. H. Liang, and C. H. Liao, “Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 141–150, Jan. 2022.
[64]K. Shao, J. Zheng, R. Tang, X. Li, Z. Man, and B. Liang, “Barrier function based adaptive sliding mode control for uncertain systems with input saturation,” IEEE/ASME Trans. Mechatronics, to be published, 2022.
[65]K. H. Tan, F. J. Lin, C. M. Shih and C. N. Kuo, "Intelligent Control of Microgrid With Virtual Inertia Using Recurrent Probabilistic Wavelet Fuzzy Neural Network," IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7451-7464, July 2020.
[66]F. J. Lin, I. F. Sun, K. J. Yang and J. K. Chang, "Recurrent Fuzzy Neural Cerebellar Model Articulation Network Fault-Tolerant Control of Six-Phase Permanent Magnet Synchronous Motor Position Servo Drive," IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153-167, Feb. 2016.
[67]F. J. Lin and R. J. Wai, "Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive," IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 102-115, Feb 2001.
[68]J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[69]ZEKIC, Josip. Modeling and analysis of SynRM for hybrid electric vehicle application. 2016. Master′s Thesis.
[70]J. Wei, J. Chen, P. Liu and B. Zhou, “The optimized triloop control strategy of integrated motor-drive and battery-charging system Based on the split-field-winding doubly salient electromagnetic machine in driving mode,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1769-1779, Feb. 2021.
[71]P. Kumar N. and T. B. Isha, “FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor,” CES Trans. Electr. Mach. Syst., vol. 3, no. 3, pp. 309-315, Sept. 2019.
[72]A. K. Singh, P. Kumar, C. U. Reddy and K. Prabhakar, “Simulation of direct torque control of induction motor using Simulink, simplorer and maxwell software,” 2015 IEEE International Transport. Electrific. Conference (ITEC), pp. 1-6, 2015.
[73]M. Jafarboland, M. Tashakorian and A. Shirzadi, “Simulation of electrical motor drive using simulink, simplorer and maxwell software,” 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 808-813, 2014.
[74]Alan Chen, “Introduction of ECE model in maxwell reduce order model generation for PMSM,” Mar. 2018.
[75]葉紹平,“利用近似最大效率控制於高性能同步磁阻馬達驅動器之發展”,碩士論文,國立中央大學電機系,民國一百一十年。
[76]ANSYS, Module 01: Basics Introduction to ANSYS maxwell, ANSYS, Inc, 2016.
[77]A. Rihar, P. Zajec and D. Vončina, “Cosimulation of ansys simplerer and MATLAB/Simulink,” 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), pp. 313-317, 2017.
[78]L. Di Leonardo, M. Popescu, M. Tursini and M. Villani, “Finite elements model co-simulation of an induction motor drive for traction application,” IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, pp. 1059-1065, 2019.
[79]K. Sun, H. Torresan and T. Summers, “Modelling and control of multi-phase PMSM in ANSYS and PLECS,” 2021 31st Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6, 2021.
[80]Z. Peng, L. Chai , and Y. Sheng, “Co-simulation modeling and fault diagnosis of closed-loop squirrel-cage motor systems,” 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 718-722, Jun. 2017.
[81]H. H. Bao, W. Zhang, Y. Yang , and Y. Chen, “Calculation and analysis of IGBT power loss in drive system for EV,” IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 276-277, Nov. 2015.
[82]J. Rengifo, F. Vaca and J. M. Aller, "Instantaneous input impedance method for PMSM parameter estimation,” 2020 IEEE International Conference on Industrial Technology (ICIT), pp. 205-210 , Feb. 2020.
[83]N. Praveen Kumar and T. B. Isha, “Application of empirical wavelet transform for analyzing inter-turn fault in FEM based closed loop speed controlled induction motor,” 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1-6, Dec. 2020.
[84]D. S. Yuan, S. H. Wang, H. L. Li, H. J. Zhang and X. Tao, “Study on engineering design and simulation method of phase-shifting reactor,” 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 372-373, Nov. 2015.
[85]X. He, X. Li and S. Song, "Nonsingular Terminal Sliding-Mode Control of Second-Order Systems Subject to Hybrid Disturbances," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 12, pp. 5019-5023, Dec. 2022.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2023-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明