博碩士論文 110225016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.135.207.201
姓名 陳育平(Yu-Ping Chen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 成對二元資料下檢定兩種診斷方法之樣本數決定
(Sample size determination for comparing diagnostic tests with matched pairs data)
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 最大餘震發生時間之統計分析★ 地震預測之統計分析
★ 加權Kaplan-Meier統計量之推廣★ 鑑別藥物最低有效劑量之檢定
★ 餘震序列RJ模型之貝氏分析★ 藥物最低有效劑量之穩健鑑別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 隨著現代醫療科技的進步,在診斷醫學中也發展新的診斷疾病的方法,讓病人得以盡早發現疾病,盡快接受治療。為檢測上述新的診斷方法相對於舊的診斷方法的準確性,需要決定招募多少受試者,所以樣本數的決定會是一項重要的步驟。如果受試者接受診斷的結果為罹病(+)或非罹病(-)的二元資料時,需要以敏感度以及特異度作為評量診斷試劑的標準。本文考量同一受試者接受兩種不同診斷方法所產生的成對資料,根據病人的敏感度與非病人的特異度評估診斷方法,針對新的診斷方法是否優越、非劣於舊的診斷方法,或新舊診斷方法具有等效性,建立適當的檢定。進一步求出上述檢定的非條件型I誤差率及檢定力,藉以計算病人與非病人之人數,之後經由疾病盛行率的調整,求出所需招募的受試者人數。最後在估計的受試者人數之下,求出比較敏感度與特異度檢定的非條件檢定力。
摘要(英) With the advancement of modern medical technology, new diagnostic methods have been developed in the field of medical diagnostics, enabling early detection of diseases and prompt initiation of treatments for patients. To evaluate the accuracy of these new diagnostic methods compared to the conventional ones, determining the appropriate sample size becomes a crucial step. When the diagnostic results for the participants are binary data, with positive and negative responses, sensitivity and specificity are used as the criteria to assess the diagnostic tests. In this study, we consider paired data generated from the same participants undergoing two different diagnostic methods. We evaluate the diagnostic methods based on the sensitivity for patients and specificity for non-patients. Our aim is to determine whether the new diagnostic method is superior, non-inferior, or equivalent to the conventional diagnostic method. We establish appropriate tests to calculate the type I error and power of these tests under an unconditional setting. The number of patients and that of non-patients are then estimated, and the total sample size is then obtained by taking into account the prevalence rate of the disease. Finally, under the estimated sample size, we compute the unconditional power of the test for the sensitivity and specificity.
關鍵字(中) ★ 樣本數
★ 成對設計
★ 二項分布
★ 診斷檢定
★ 相關性二元資料
關鍵字(英) ★ Sample sizes
★ Paired design
★ Binomial distribution
★ Diagnostic test
★ Correlated binary data
論文目次 摘要 i
Abstract ii
目錄 iii
致謝辭 iv
圖目次 v
表目次 v
第一章 研究動機及目的 1
第二章 文獻回顧 6
第三章 成對樣本下兩診斷方法之比較 10
3.1 優越性檢定 10
3.2 非劣性檢定 12
3.3 等效性檢定 14
3.4 敏感度及特異度之檢定 16
第四章 數值分析 21
4.1 數值計算設計 21
4.2 數值計算結果 22
4.3 實例 23
第五章 結論 25
參考文獻 26
附錄 28
參考文獻 Agresti A. and Min Y. (2005) Simple improved confidence intervals for comparing matched proportions. Stat Med; 24(5):729-40. doi: 10.1002/sim.1781.
Bonett DG. and Price RM. (2012) Adjusted wald confidence interval for a difference of binomial proportions based on paired data. Journal of Educational and Behavioral Statistics; 37(4), 479–488.
Buderer NM. (1996) Statistical methodology: I. Incorporating the prevalence of disease into the sample size calculation for sensitivity and specificity. Acad Emerg Med; 3(9):895-900.
Casella G. and Berger RL. (2022) Statistical Inference. 2nd Edition. Cengage, TAIWAN.
Connor RJ. (1987) Sample size for testing differences in proportions for the paired-sample design. Biometrics; 43(1):207-11.
Duffy SW. (1984) Asymptotic and exact power for the McNemar Test and its analogue with r controls per case. Biometrics; 40(4):1005–1015. doi: 10.2307/2531151
Hwang YT and Su NC. (2022) Sample size determination for comparing accuracies between two diagnostic tests under a paired design. Biom J; 64(4):771-804.
Li J. and Fine J. (2004) On sample size for sensitivity and specificity in prospective diagnostic accuracy studies. Stat Med; 23(16):2537-2550. doi: 10.1002/sim.1836.
Liu JP., Hsueh HM., Hsieh E., Chen JJ. (2002) Tests for equivalence or non-inferiority for paired binary data. Stat Med; 21(2):231-45. doi: 10.1002/sim.1012.
Lloyd CJ. (1990) Confidence intervals from the difference between two correlated proportions. Journal of the American Statistical Association; 85(412):1154–1158.
McNemar Q. (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12:153–157. doi: 10.1007/BF02295996.
Nam JM. (1997) Establishing equivalence of two treatments and sample size requirements in matched-pairs design. Biometrics; 53(4):1422-30.
Zhou XH. and Qin G. (2005) A new confidence interval for the difference between two binomial proportions of paired data. Journal of Statistical Planning and Inference;128:527-542.
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明