博碩士論文 110323606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.149.241.183
姓名 奴卡旺(Nugraha Merdekawan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 有限元素分析於石英振盪器之聲子晶體應用 與非線性效應
(Finite Element Analysis in Phononic Crystal Application and Nonlinear Effects of Quartz Oscillator)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 撓性結構之主動振動控制★ 速度與位移回饋式壓電吸振器之減振研究
★ 以LabVIEW為介面之模態測試軟體製作★ 電壓回饋壓電吸振器對平板之振動控制
★ 可調式消音閥的分析與最佳設計★ 旋轉樑的動態分析與壓電吸振器之減振設計
★ 自感式壓電吸振器之設計與應用於矩形板之減振★ 多孔薄方板之振動與聲場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-5-15以後開放)
摘要(中) 石英振盪器是5G通信電子元器件的核心元件。 由於5G應用必須具備高速率和低時延,因此對頻率規範的要求比以往更加嚴格。 本論文之研究方向集中在以有限元素方法進行石英振盪器的數值模擬分析。論文中首先探討聲子晶體的應用,目標為減少振盪器的能量損失,獲得高Q值;當諧振器的尺寸變小時,高驅動功率和溫差會引起非線性效應,例如使振盪頻率偏移,從而導致頻率不穩定。故本論文亦分析減少能量逸散的方法,包含副波接近主模態的影響、切面角度的影響、以及聲子晶體之應用。論文第二部分析非線性特性,包含激勵功率依賴性 (DLD) 效應以及石英諧振器的溫度-頻率效應。
本研究中首先進行坐標系的轉換,推導由於石英的大變形和非線性特性引起的應力和應變的公式,以及建立非線性運動方程,再其後進行石英振盪器之模型建立,最後用有限元軟體 COMSOL執行計算以獲得模擬結果。本研究的的數值結果與先前研究的實驗數據一致性頗高,顯示其正確性。此技術可以提供更方便的模擬程序和更準確的數值數據。
摘要(英) The quartz oscillator, also called the quartz resonator, is one of core elements of 5G communication electronic components. Because 5G applications require high speed and low latency, the accuracy of frequency component specifications is more stringent than before. This research thus concentrated on the numerical analysis, using finite element software COMSOL, of the quartz oscillator, especially on application of the phononic crystal structure and nonlinear effects. While the size of the resonator becomes smaller, the resonant region will be closer to the mounting glue; and this results in higher dissipating energy. Energy loss can be prevented by choice of dimensions to discard unwanted modes, beveled profile, and phononic crystal application. The high drive power and the temperature difference can induce nonlinear effects such as shifting the oscillation frequency and causing frequency instability. This study also worked on simulation of nonlinear effects of the quartz resonator, including drive level dependency (DLD) effect and the temperature-frequency effect. Before analysis of nonlinearity using COMSOL, the following work were done: transformation of coordinates, derivation of weak form governing equations, and acquisition of nonlinear coefficient values of quartz material.
The numerical results of the present models were verified using experimental and simulation data from previous studies. Compared to numerical data provided by previous researches, our numerical results accord better with the experimental data. This simulation technique can provide more accurate numerical data and more convenient calculation procedures.
關鍵字(中) ★ 石英振盪器; 聲子晶體; 激勵功率依賴性(DLD); 溫度-頻率效應; 有限元法; COMSOL 多物理場
★ 石英振盪器
★ 聲子晶體
★ 激勵功率依賴性(DLD)
★ 溫度-頻率效應
★ 有限元法
★ COMSOL 多物理場
關鍵字(英) ★ quartz oscillator
★  phononic crystal
★  drive level dependency (DLD)
★  temperature-frequency effect
★  finite element method
★  COMSOL Multiphysics
★ quartz oscillator
★ phononic crystal
★ drive level dependency (DLD)
★ temperature-frequency effect
★ finite element method
★ COMSOL Multiphysics
論文目次 摘要 .................................................................................................................................. i
Abstract ......................................................................................................................... ii
Table of Contents .......................................................................................................... iii
List of Figures ................................................................................................................ v
List of Tables .............................................................................................................. viii
Chapter 1. Introduction ................................................................................................ 1
1.1 Introduction to the quartz oscillator .......................................................................... 1
1.2 Quartz crystallography and coordinate system ........................................................ 2
1.3 Quartz cutting angle and coordinate transformation ................................................. 4
1.4 Modes of vibration .................................................................................................... 6
1.5 Nonlinear characteristic of quartz ............................................................................. 7
1.6 Phononic crystal and dispersive medium .................................................................. 8
1.7 Literature review ..................................................................................................... 10
Chapter 2. Theoretical Formulations ......................................................................... 13
2.1 Piezoelectric effect ................................................................................................. 13
2.2 Large deformation theory ....................................................................................... 14
2.2.1 Deformation and strain analysis .................................................................. 14
2.2.2 Stress analysis ............................................................................................... 15
2.3 Finite element method and weak formulation ......................................................... 17
2.3.1 Finite element method .................................................................................... 17
2.3.2 Weak formulation using Galerkin’s method ................................................... 17
2.4 Quartz oscillator governing equations ..................................................................... 18
2.4.1 Linear governing equations ............................................................................. 18
2.4.2 Nonlinear governing equations ........................................................................ 20
2.5 Quartz oscillator equivalent circuit ......................................................................... 24
2.5.1 The composition of equivalent circuits ........................................................... 24
2.5.2 Series and parallel resonant frequencies .......................................................... 25
iv
Chapter 3. COMSOL Multiphysics Settings .............................................................. 27
3.1 Finite element model of quartz oscillator ............................................................... 27
3.1.1 Geometries ....................................................................................................... 27
3.1.2 Materials .......................................................................................................... 28
3.1.3 Physics ............................................................................................................. 30
3.1.4 Boundary conditions and the domain .............................................................. 31
3.1.5 Meshes ............................................................................................................. 32
3.1.6 Studies ............................................................................................................. 34
3.2 Phononic crystal structure ....................................................................................... 34
3.2.1 Lattice structure ............................................................................................... 34
3.2.2 Floquet periodicity ........................................................................................... 35
3.2.3 Dispersion diagram .......................................................................................... 35
3.3 Nonlinear analysis of drive level dependency effect .............................................. 37
3.4 Nonlinear analysis of temperature-frequency effect ............................................... 47
Chapter 4. Results and Discussions ............................................................................. 52
4.1 Influence of changing design parameters of the quartz oscillator .......................... 52
4.2 Energy trapping method utilizing bevel and phononic crystal ................................ 58
4.2.1 Effects of beveling on quality factor and displacements ratio......................... 58
4.2.2 Introduction of phononic crystal ..................................................................... 60
4.2.2.1 Effects of lattice length (a) and radius ratio (r/a) on the band gap ....... 60
4.2.2.2 Effects of number of holes (n), x-positions (x), arrangements on quality factor and displacements ratio .......................................................................... 62
4.3 Nonlinear analysis of drive level dependency (DLD) effect ................................... 67
4.4 Nonlinear analysis of temperature-frequency effect ............................................... 69
Chapter 5. Conclusions and Future Works .............................................................. 72
5.1 Conclusions ............................................................................................................ 72
5.2 Future works ........................................................................................................... 73
References...................................................................................................................... 74
Appendix A – Material Property of Y-Cut Quartz ................................................... 79
參考文獻 [1] Silica, IMA Europe, from https://ima-europe.eu/about-industrial-minerals/silica/.
[2] Yu, X. and Yang, D., 2017, “Growth of crystalline silicon for solar cells: Czochralski Si. Handbook of Photovoltaic Silicon”, Handbook of Photovoltaic Silicon, vol.1, pp. 1-2. doi:10.1007/978-3-662-52735-1_12-1.
[3] Crystal structure - definition, 7 types of crystal structure with videos, BYJUS, from https://byjus.com/chemistry/crystal-structure/
[4] Brainerd, J. G., Jensen, A. G., and Cumming, L. G., 1949, "Standards on Piezoelectric Crystals, 1949," Proceedings of the IRE, vol. 37, pp. 1378-1395, doi:10.1109/JRPROC.1949.229975.
[5] American, A., and Standard, N., 1984, " An American National Standard: IEEE Standard on Piezoelectricity," IEEE Transactions on Sonics and Ultrasonics, vol. 31, pp. 2, doi:10.1109/T-SU.1984.31464.
[6] Piezoelectric materials: Understanding the standards, COMSOL, from https://www.comsol.fr/blogs/piezoelectric-materials-understanding-standards/.
[7] Ghosh, S., 2014, “Study on the origin of 1/f in bulk acoustic wave resonators,” Université de Franche-Comté, France, vol. 1, pp. 16-19.
[8] Gerber, E. A., Ballato, A., 1989, "Precision Frequency Control- Volume 1: Acoustic Resonators and Filters," The Journal of the Acoustical Society of America, vol.1, pp. 434, doi:10.1121/1.397534.
[9] Thickness Shear Mode Quartz Oscillator, MEM Module, COMSOL 5.3a Tutorial, 2019.
[10] Crystal oscillator, Wikipedia, from https://en.wikipedia.org/wiki/Crystal _oscillator.
75
[11] Fundametal and Overtone Vibrations, TXC technical terminology, from https://txccrystal.com/term.html.
[12] Huang, Z.G., and Chen, Z. Y., 2014. “Analysis of excitation and dead vibration modes of quartz resonators,” Advances in Acoustics and Vibration, vol.1, pp. 1–9. doi:10.1155/2014/746847
[13] Wang, Z., Zhao, M., and Yang, J., 2013, “Amplitude evolution equation and transient effects in piezoelectric crystal resonators,” Journal of Applied Physics, vol. 114, pp. 1–4, doi:10.1063/1.4825050
[14] Brendel, R., Addouche, M., Salzenstein, P., Rubiola, E., and Shmaliy, Y. S., 2004, “Drive level dependence in quartz crystal resonators at low drive levels: A Review,” 18th European Frequency and Time Forum (EFTF 2004), vol. 1, pp. 1–4, doi:10.1049/cp:20040809.
[15] Jing-Fu, B., Ammar Khan, M., and Fei-Hong, B., 2018, “Phononic Crystal Resonators,” Phonons in Low Dimensional Structures, vol. 6, pp. 1–10, doi:10.5772/intechopen.78584.
[16] Du, Q., Zeng, Y., Huang, G., and Yang, H., 2017, “Elastic metamaterial-based seismic shield for both lamb and surface waves,” AIP Advances, vol. 7, pp. 6, doi:10.1063/1.4996716.
[17] Mould, R. F., 2007, “Pierre Curie, 1859–1906,” Current Oncology, vol. 14, pp. 74–82, doi:10.3747/co.2007.110.
[18] Bechmann, R., 1958, "Blastic and Piezoelectric Constants of Alpha-Quartz," Physical Review, Vol. 110, pp. 1060–1061, doi:10.1103/PhysRev.110.1060.
[19] Thurston, R. N., Bwywei, H. J., McSkimin, and Andreatch, P., 1966, "Third-Order Elastic Coefficients of Quartz," Journal of Applied Physics, vol. 37, pp. 267-275, doi:10.1063/1.1707824.
76
[20] Wang, C., M., Reddy, J., N., and Lee, K., H., 2000, “Bending Relations for Levy Solutions,” Elsevier Science Ltd, vol. 1, pp. 133–152, doi:10.1016/B978-008043784-2/50008-3.
[21] Onate, E., 2013, “Thick/thin plates. Reissner-Mindlin theory,” Structural Analysis with the Finite Element Method Linear Statics, vol. 1, pp. 1–10, doi:10.1007/978-1-4020-8743-1_6.
[22] Schöllhammer, D., 2019, “Reissner–Mindlin Shell Theory Based on Tangential differential Calculus,” Computer Methods in Applied Mechanics and Engineering, vol. 352, pp. 1–27, doi:10.1016/j.cma.2019.04.018.
[23] Filler, R., 1985, "The Amplitude-Frequency Effect in SC-Cut Resonators," 39th Annual Symposium on Frequency Control, vol. 1 , pp. 311–316, doi:10.1109/FREQ.1985.200861.
[24] Patel, M. S., Yong, Y.-K., and Tanaka, M., 2009, “Drive level dependency in quartz resonators”. International Journal of Solids and Structures, vol. 46, pp. 1856–1871, doi:10.1016/j.ijsolstr.2008.12.021.
[25] Lee, P. C. Y. and Yong, Y. K, 1984, "Temperature Derivatives of Elastic Stiffness Derived from the Frequency-Temperature Behavior of Quartz Plates," Journal of Applied Physics, vol. 56, pp. 1514–1521, doi:10.1063/1.334107.
[26] Yong, Y. K. and Wei, W., 2000, "Lagrangian Temperature Coefficients of the Piezoelectric Stress Constants and Dielectric Permittivity of Quartz," Proceedings of the 2000 lEBE/ETA International Frequency Control Symposium and Exhibition, vol. 1, pp. 364–372, doi:10.1109/FREQ.2000.887383.
[27] Beerwinkle, A. D., 2009, Nonlinear finite element modeling of quartz crystal resonators, Aerospace and Mechanical Engineering, Oklahoma State University.
77
[28] Lamb, J. and Richter, J., 1966, “Anisotropic Acoustic Attenuation with New Measurement for Quartz at Room Temperatures,” Proceedings of the Royal Society, vol. 293, pp. 479–492, doi:10.1098/rspa.1966.0185.
[29] Pao, S. Y., Chao, M. K., Chiu, C. H., Lam, C. S., and Chang, P. Z., 2005, “Beveling at-cut quartz resonator design by an efficient numerical method,” IEEE Ultrasonics Symposium, vol. 3, pp. 1848–1851, doi:10.1109/ultsym.2005.1603230.
[30] Chen, Y.Y., Lin, Y.R., Wu, T.T., and Pao, S.Y., 2015, “Anchor loss reduction of quartz resonators utilizing phononic crystals,” IEEE International Ultrasonics Symposium (IUS), vol. 1, pp. 1–4, doi:10.1109/ultsym.2015.0453.
[31] 林彥睿, 2015, 低支撐能損石英振盪器之研究, 博碩士論文知識加值系統, 大同大學.
[32] Gupta, N., Suman, and Yadav, S.K., 2014, “Electricity Generation Due to Vibration of Moving Vehicles Using Piezoelectric Effect,” Advance in Electronic and Electric Engineering, vol. 4, pp. 313–318.
[33] Altenbuchner, C., and Hubbard, J. E., 2018, “Bioinspired Flight Robotics Systems”. Modern Flexible Multi-Body Dynamics Modeling Methodology for Flapping Wing Vehicles, vol. 1, pp. 1–21, doi:10.1016/b978-0-12-814136-6.00001-9.
[34] Veerabhadraiah, N., 2009, Finite Element Studies On Deformation Characteristics Of Non-Linear Materials In Quasi-Static Regime, Department Of Mechanical Engineering, University Visvesvaraya College Of Engineering.
[35] Dean, E. T., 2020, “Representation of stress and strain in granular materials using functions of direction. Granular Matter,” Granular Matter, vol. 22, pp. 1–21, doi:10.1007/s10035-020-01045-7.
78
[36] First And Second Piola Kirchhoff Stress Tensors, Engineering at Alberta, from https://engcourses-uofa.ca/books/introduction-to-solid-mechanics/stress/first-and-second-piola-kirchhoff-stress-tensors/.
[37] Quartz Crystal Parameter Calculator. Everything RF, from https://www.everythingrf.com/rf-calculators/quartz-crystal-parameter-calculator.
[38] Crystal Oscillators Frequency Response, Tutorials Point, from https://www.tutorialspoint.com/sinusoidal_oscillators/sinusoidal_crystal_oscillators.htm.
[39] Huang, L.W., 2021, Determining Resonance Characteristics and Drive Level Dependency of Quartz Oscillators via the Finite Element Method, Department of Mechanical Engineering, National Central University.
[40] Yankin, S., Talbi, A., Du, Y., Gerbedoen, J.C., Preobrazhensky, V., Pernod, P., and Bou Matar, O., 2014, “Finite element analysis and experimental study of surface acoustic wave propagation through two-dimensional pillar-based surface phononic crystal,” Journal of Applied Physics, vol. 115, pp. 3, doi:10.1063/1.4885460.
[41] Rao, S., S., 2006, Mechanical Vibration, Fifth ed., Pearson, Upper Saddle River.
指導教授 黃以玫(Yi-Mei Huang) 審核日期 2023-5-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明