博碩士論文 110323046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.223.172.163
姓名 黃靖雄(Jing-Syong Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 無電極接觸電化學製作N型奈米矽晶之研究
(Non-contact-Electrode Electrochemical Processing to Fabricate N-type Silicon Nanocrystals)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) N型矽的電化學蝕刻普遍來說需施加外部輔助,達到電洞-電子對分離,生成電洞後才能有顯著的效果。近期也發展出在暗室中加入磁場、電場和PN接面……等,都能讓N-type矽成功製作出多孔矽。本研究先設計一新式垂直式蝕刻槽,以可拆卸式PN接面不加入金屬片輔助方式,在暗室的情況下施加電場進行研究。實驗結束後,能輕鬆拆除輔助的P-type矽,且電化學處理後N-type矽能保持潔淨且無汙染。實驗為使用不同摻雜濃度的N-type矽與不同摻雜濃度的P-type矽結合成PN接面進行電化學蝕刻,蝕刻完的試片再進行場發射掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、光致發光光譜儀(PL)分析。經由分析蝕刻後試片發現有光致發光的現象產生,在進行SEM、TEM分析後得出加上摻雜濃度達到一定量的P-type矽,實驗結果都會比單片N-type矽蝕刻來得更好,拍攝PL後估算出的奈米晶體尺寸也與TEM結果相吻合。
摘要(英) Electrochemical etching of N-type silicon generally requires external assistance to achieve hole-electron pair separation and generate significant effects. Recently, the addition of magnetic fields, electric fields, and PN junctions in a dark room has been developed, which allows successful fabrication of porous silicon from N-type silicon. In this study, a new vertical etching chamber was designed with a detachable PN junction, without the use of metal foil as an assistive method. The experiments were conducted in a dark room with the application of an electric field. After the experiments, the assistive P-type silicon could be easily removed, and the N-type silicon remained clean and uncontaminated after electrochemical treatment.The experiment involved combining N-type silicon with different doping concentrations and P-type silicon with different doping concentrations to form PN junctions for electrochemical etching. The etched samples were then analyzed using field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). Analysis of the etched samples revealed the occurrence of photoluminescence phenomena, and the results of SEM and TEM analyses showed that adding a certain amount of P-type silicon with appropriate doping concentrations yielded better results compared to etching single N-type silicon wafers. The estimated nanocrystalline grain size obtained from PL imaging also matched the results obtained from TEM analysis.
關鍵字(中) ★ PN接面
★ 新式垂直式蝕刻槽
★ 電化學處理
★ SEM
★ TEM
★ PL
★ 光致發光
★ 奈米晶體
關鍵字(英)
論文目次 目錄
摘要………………………………………………………………………………………………………………………………………i
Abstrast…………………………………………………………………………………………………………………………ii
誌謝……………………………………………………………………………………………………………………………………iii
目錄………………………………………………………………………………………………………………………………………iv
圖目錄…………………………………………………………………………………………………………………………………vi
表目錄…………………………………………………………………………………………………………………………………ix
第一章 緒論……………………………………………………………………………………………………………………1
1-1 前言……………………………………………………………………………………………………………………1
1-2 研究背景……………………………………………………………………………………………………………1
1-3 研究動機及目的…………………………………………………………………………………………………2
第二章 原理與文獻回顧………………………………………………………………………………………………3
2-1 多孔矽理論………………………………………………………………………………………………………3
2-1-1 擴散限制模型(The Diffusion-Limit Model)……………………………3
2-1-2 貝爾模型(The Beale Model) ……………………………………………3
2-1-3 量子模型(The Quantum Model) ………………………………………3
2-2 多孔矽製作………………………………………………………………………………………………………4
2-2-1 乾式蝕刻法(Dry etching) …………………………………………………4
2-2-2 濕式蝕刻法(Wet etching) …………………………………………………4
2-2-3 電化學蝕刻法(Electrochemical etching)………………5
2-3 蝕刻機制……………………………………………………………………………………………………………5
2-3-1 氫氧根(hydroxyl)為底之蝕刻機制……………………………………5
2-3-2 氫氟根(hydrofluoride)為底之蝕刻機制………………………6
2-3-3 PN接面與電化學蝕刻關係…………………………………………………………8
第三章 實驗步驟與方法……………………………………………………………………………………………10
3-1 矽晶圓試片前處理………………………………………………………………………………………10
3-2 實驗設備介紹………………………………………………………………………………………………14
3-3 實驗步驟…………………………………………………………………………………………………………17
3-4 分析儀器…………………………………………………………………………………………………………20
第四章 結果與討倫………………………………………………………………………………………………………25
4-1 進行蝕刻實驗時的電壓電流圖………………………………………………………………25
4-2 蝕刻後矽晶圓於日光燈及UV燈下觀察結果……………………………………30
4-3 CFE-SEM表面形貌及剖面觀察結果……………………………………………………34
4-4 TEM觀察結果…………………………………………………………………………………………………53
4-5 PL觀察結果……………………………………………………………………………………………………56
第五章 結論與未來展望……………………………………………………………………………………………65
第六章 參考文獻……………………………………………………………………………………………………………66

圖目錄
圖2-1 矽表面多孔矽層與電化學拋光的I-V圖…………………………………………………6
圖2-2 PN接面示意圖……………………………………………………………………………………………………8
圖2-3 穩態時的能帶圖…………………………………………………………………………………………………9
圖3-1 六吋矽晶圓試片………………………………………………………………………………………………10
圖3-2 Twintex電源供應器………………………………………………………………………………………15
圖3-3 電源供應器附設軟體Programmable DC Power Supply…………15
圖3-4 雙槽垂直式蝕刻槽…………………………………………………………………………………………15
圖3-5 蝕刻槽內側構造………………………………………………………………………………………………16
圖3-6 白金電極……………………………………………………………………………………………………………16
圖3-7 電化學蝕刻實驗架設圖………………………………………………………………………………17
圖3-8 實驗流程圖………………………………………………………………………………………………………18
圖3-9 高強度紫外燈…………………………………………………………………………………………………20
圖3-10 CFE-SEM…………………………………………………………………………………………………………21
圖3-11 FIB……………………………………………………………………………………………………………………22
圖3-12 TEM……………………………………………………………………………………………………………………23
圖3-13 PL量測機台……………………………………………………………………………………………………24
圖4-1 N電壓、電流、時間關係圖………………………………………………………………………26
圖4-2 N/P電壓、電流、時間關係圖…………………………………………………………………26
圖4-3 N/P+電壓、電流、時間關係圖………………………………………………………………26
圖4-4 N/P++電壓、電流、時間關係圖……………………………………………………………27
圖4-5 N+ 電壓、電流、時間關係圖…………………………………………………………………27
圖4-6 N+/P 電壓、電流、時間關係圖……………………………………………………………27
圖4-7 N+/P+ 電壓、電流、時間關係圖…………………………………………………………28
圖4-8 N+/P++ 電壓、電流、時間關係圖………………………………………………………28
圖4-9 N++ 電壓、電流、時間關係圖………………………………………………………………28
圖4-10 N++/P 電壓、電流、時間關係圖………………………………………………………29
圖4-11 N++/P+ 電壓、電流、時間關係圖……………………………………………………29
圖4-12 N++/P++ 電壓、電流、時間關係圖…………………………………………………29
圖4-13 N、400X、俯視圖………………………………………………………………………………………36
圖4-14 N、200X、表面孔徑尺寸………………………………………………………………………36
圖4-15 N、200X、剖面圖………………………………………………………………………………………37
圖4-16 N/P、2000X、俯視圖………………………………………………………………………………37
圖4-17 N/P、100000X、表面孔徑……………………………………………………………………38
圖4-18 N/P、400X、剖面圖…………………………………………………………………………………38
圖4-19 N/P+、400X、俯視圖………………………………………………………………………………39
圖4-20 N/P+、400X、表面孔徑…………………………………………………………………………39
圖4-21 N/P+、200X、剖面圖………………………………………………………………………………40
圖4-22 N/P++、400X、俯視圖……………………………………………………………………………40
圖4-23 N/P++、400X、表面孔徑圖…………………………………………………………………41
圖4-24 N/P++、250X、剖面圖……………………………………………………………………………41
圖4-25 N+、2000X、俯視圖…………………………………………………………………………………42
圖4-26 N+、200X、剖面圖……………………………………………………………………………………42
圖4-27 N+/P、2000X、俯視圖……………………………………………………………………………43
圖4-28 N+/P、2000X、剖面圖……………………………………………………………………………43
圖4-29 N+/P+、2000X、俯視圖…………………………………………………………………………44
圖4-30 N+/P+、2000X、表面孔洞圖………………………………………………………………44
圖4-31 N+/P+、200X、剖面圖……………………………………………………………………………45
圖4-32 N+/P++、2000X、俯視圖………………………………………………………………………45
圖4-33 N+/P++、2000X、表面孔洞圖……………………………………………………………46
圖4-34 N+/P++、200X、剖面圖…………………………………………………………………………46
圖4-35 N++、2000X、俯視圖………………………………………………………………………………47
圖4-36 N++、2000X、剖面圖………………………………………………………………………………47
圖4-37 N++/P、2000X、俯視圖…………………………………………………………………………48
圖4-38 N++/P、2000X、剖面圖…………………………………………………………………………48
圖4-39 N++/P+、2000X、俯視圖………………………………………………………………………49
圖4-40 N++/P+、2000X、剖面圖………………………………………………………………………49
圖4-41 N++/P++、50X、俯視圖…………………………………………………………………………50
圖4-42 N++/P++、100000X、俯視圖………………………………………………………………50
圖4-43 N++/P++、400X、剖面圖………………………………………………………………………51
圖4-44 N++、100k、TEM圖……………………………………………………………………………………54
圖4-45 N++、500k、TEM圖……………………………………………………………………………………54
圖4-46 N++/P++、60k、TEM圖……………………………………………………………………………55
圖4-47 N++/P++、800k、TEM圖…………………………………………………………………………55
圖4-48 N、PL檢測圖、照射時間為5秒……………………………………………………………58
圖4-49 N/P、PL檢測圖、照射時間為10秒……………………………………………………58
圖4-50 N/P+、PL檢測圖、照射時間為10秒…………………………………………………59
圖4-51 N/P++、PL檢測圖、照射時間為10秒………………………………………………59
圖4-52 N+、PL檢測圖、照射時間為5秒…………………………………………………………60
圖4-53 N+/P、PL檢測圖、照射時間為10秒…………………………………………………60
圖4-54 N+/P+、PL檢測圖、照射時間為10秒………………………………………………61
圖4-55 N+/P++、PL檢測圖、照射時間為10秒……………………………………………61
圖4-56 N++、PL檢測圖、照射時間為5秒………………………………………………………62
圖4-57 N++/P、PL檢測圖、照射時間為5秒…………………………………………………62
圖4-58 N++/P+、PL檢測圖、照射時間為5秒………………………………………………63
圖4-59 N++/P++、PL檢測圖、照射時間為5秒……………………………………………63

表目錄
表3-1 N型矽晶圓規格………………………………………………………………………………………………11
表3-2 P型矽晶圓規格………………………………………………………………………………………………12
表3-3 試片清洗流程…………………………………………………………………………………………………13
表3-4 N型矽試片及P型矽試片實驗組合…………………………………………………………19
表4-1 N型矽晶圓(2-7 Ω-cm)蝕刻後於日光燈及紫外燈下的觀察結果…………………………………………………………………………………………………………………………………………31
表4-2 N型矽晶圓(0.01-0.018 Ω-cm)蝕刻後於日光燈及紫外燈下的觀察結果……………………………………………………………………………………………………………………………………32
表4-3 N型矽晶圓(0.001-0.0015 Ω-cm)蝕刻後於日光燈及紫外燈下的觀察結果………………………………………………………………………………………………………………………………33
表4-4 SEM結果整理表………………………………………………………………………………………………52
表4-5 PL測檢峰值結果……………………………………………………………………………………………64
參考文獻 [1] R.P. Feynman, "Plenty of room at the bottom", APS Annual Meeting, 1959.
[2] Strehlke, S, et al., "The porous silicon emitter concept applied to multicrystalline silicon solar cells.", Thin Solid Films Vol. 297.1-2, pp. 291-295, 1997.
[3] Stolyarova, S., et al., "Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing.", Sensors and Actuators B: Chemical 131.2, pp. 509-515, 2008.
[4] Patolsky, Fernando, Gengfeng Zheng, and Charles M. Lieber., "Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.", Nature protocols 1.4, 2006.
[5] Lin, J.C., and Huang, K.M., "Microstructure analysis and photoelectronic properties of porous silicon.", Chinese Culture University Hwa Kang Journal of Engineering, 21, 2007.
[6] Watanabe, Y., and T. Sakai., "Application of a thick anode film to semiconductor devices.", Rev. Elec. Commun. Lab, 19.7-8, pp. 899, 1971.
[7] Salonen, J., and Mäkilä, E., "Thermally carbonized porous silicon and its recent applications.", Advanced Materials, Vol. 30, 2018.
[8] Canham, L. T., "Silicon quantum wire fabricated by electrochemical and chemical dissolution of wafers.", Appl. Phys., Lett. 57, 1046, 1990.
[9] Sagnes, I., Halimaoui, A., Vincent, G., and Badoz, P.A. , "Optical absorption evidence of a quantum size effect in porous silicon.", Appl. Phys. Lett, 62, 1155, 1993.
[10] Canham, Leigh T. "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.", Applied physics letters 57.10, pp. 1046-1048, 1990.
[11] Cullis, A. G., and Canham, L. T., "Visible light emission due to quantum size effects in highly porous crystalline silicon.", Nature, 353, 335, 1991.
[12] Smith R., and Collins S., "Porous silicon formation mechanisms.", Journal of Applied Physics, Vol. 71, pp. R1-R22, 1992.
[13] Lehmann, V., and H. Föll., "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon.", Journal of the Electrochemical Society, 137.2, pp. 653-659, 1990.
[14] Lehmann V., "The physics of macropore formation in low doped n-type silicon.", Journal of the Electrochemical Society, Vol. 140, pp. 2836-2843, 1993.
[15] Marso, M., Berger, M. G., Thönissen, M., Lüth, H., and Münder, H., "An extended quantum model for porous silicon formation.", Journal of the Electrochemical Society, Vol. 142, pp. 615-620, 1995.
[16] 施敏.梅凱瑞、林鴻志,半導體製程概論,國立交通大學出版社,新竹市,2016。
[17] Chen, J., Cranton, W., and Fihn, M., "Wet etching.", Handbook of Visual Display Technology, pp. 861-870, 2012.
[18] Burham, N., Hamzah, A. A., and Majlis, B. Y., "Self-adjusting electrochemical etching technique for producing nanoporous silicon membrane.", New Research on Silicon-Structure, Properties, Technology, 2017.
[19] Trucks, G. W., Raghavachari K., Higashi, G. S., and Chabal, Y. J., "Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation.", Physical Review Letters, Vol. 65, pp. 504, 1990.
[20] Tong, Q. Y., Schmidt, E., Gösele, U., and Reiche, M., "Hydrophobic silicon wafer bonding.", Applied Physics Letters, Lett. 64, pp. 625-627, 1994.
[21] Uhlir Jr, A., "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333-347, 1956.
[22] L. Boarino and G. Amato, Encyclopedia of Nanotechnology., B. Bhushan Editor, pp. 1781, Springer Netherlands , 2012.
[23] Lehmann, V., and Gösele, U., "Porous silicon: Quantum sponge structures grown via a self‐adjusting etching process.", Advanced Materials, Vol. 4, 114, 1992.
[24] Unagami, T., "Formation mechanism of porous silicon layer by anodization in HF solution.", Journal of the electrochemical society, 127.2, 476, 1980.
[25] Badel, X., Linnros, J., and Kleimann, P., "Electrochemical etching of n-type silicon based on carrier injection from a back side pn junction.", Electrochemical and Solid State Letters, Vol. 6, C79, 2003.
[26] Koshida, N., and Koyama H., "Visible electroluminescence from porous silicon. ", Appl. Phys. Lett. 60, 347, 1992.
[27] Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A., and Bomchil, G., "Photoluminescence of high porosity and of electrochemically oxidized porous.", Surface Science, 254, 195, 1991.
[28] Bright, V. M., Kolesar, E. S., Jr. and Sowders, D.M., "Reflection characteristics of porous silicon surfaces.", Optical Engineering, 36, 1088, 1997.
[29] Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., and Paillard, V., "Photoluminescence properties of silicon nanocrystals as a function of their size", Physical Review B, Vol. 62, pp. 15942, 2000.
[30] Mooney, J., and Kambhampati, P., "Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra", Journal of Physical Chemistry Letters, pp. 3316-3318, 2013.
[31] Tung, R. T., "Schottky-barrier formation at single-crystal metal-semiconductor interfaces.", Physical review letters, 52, 461, 1984.
指導教授 李天錫 審核日期 2023-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明