博碩士論文 110521065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.21.158.147
姓名 陳逸弘(Yi-Hong Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用石墨烯改善氮化鎵歐姆接觸之研究
(Improved Ohmic Contact on Gallium Nitride by Graphene Layer)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要針對氮化鋁鎵歐姆接觸進行研究,分別對石墨烯特性及挖槽式歐姆接觸進行討論。研究包含,石墨烯轉印流程,並以拉曼光譜分析在不同表面處裡及退火溫度,對石墨烯所造成的影響,並利用傳輸線模型分析加入石墨烯後,接面等效能障的變化。最後綜合石墨烯及挖槽式歐姆接觸氮化鋁鎵/氮化鎵之高電子遷移率電晶體元件,分析其直流電性及接觸電阻的改善。
石墨烯表面經氧電漿處理後,有助於提升後續金屬電極的附著度,實驗觀察到,在短暫的氧電漿處理後,石墨烯的親水度有著明顯的上升,但在拉曼光譜分析中,也觀察到氧電漿處理後,石墨烯缺陷的增加。本研究也探討了300 ℃至850 ℃退火溫度對石墨烯所帶來的衝擊,經由拉曼光譜分析,在氮氣環境下,因為溫度所導致的缺陷增加,發生在400 ℃至500 ℃之間。
傳統氮化鋁鎵/氮化鎵之高電子遷移率電晶體,多使用高溫退火,來形成較好的歐姆接觸,而傳統式特徵歐姆接電阻(Specific contact resistivity, ρc)為7.3×10-5 Ω·cm2,在歐姆接觸區域引入石墨烯插入層,可有效使其特徵歐姆接觸電阻下降至8.1×10-6 Ω·cm2。經傳輸線模型分析、擬合後觀察,電子在熱離子場發射(Thermionic field emission, TFE)模型中,接面等效能障由傳統式歐姆接觸的1.02 eV,下降至有石墨烯插入層歐姆接觸的0.83 eV,解釋了其接觸電阻下降的成因。
挖槽式歐姆接觸也是一個已被實證,有效降低歐姆接觸電阻的方式,本研究加入並聯的長方形挖槽(2×48 μm2),並在引入石墨烯插入層,有效的降低了接觸電阻至1.36 Ω·mm,相較傳統式歐姆接觸的4.13 Ω·mm,有著67.1 %的下降。並在製程中加入氧電漿處理,有效的去除了石墨烯所導致的額外電流路徑,使得元件能夠達到良好的開關特性。
摘要(英) This thesis primarily focuses on the study of gallium nitride ohmic contacts, discussing the characteristics of graphene and recessed ohmic contacts. The research includes the graphene transfer process and analyzes the effects of different surface treatments and annealing temperatures on graphene using Raman spectroscopy. Additionally, the changes in interface barrier height are examined by employing a transfer length method after inserting a graphene layer. Finally, the combined graphene and recessed ohmic contact AlGaN/GaN HEMT are analyzed for their DC electrical properties and contact resistance improvement.
After oxygen plasma treatment on the graphene surface, the adhesion of metal electrodes is enhanced. Experimental observations reveal a significant increase in graphene′s hydrophilicity after a brief oxygen plasma treatment. However, the Raman spectroscopy analysis shows increased defects following the oxygen plasma treatment. This study also investigates the impact of annealing temperatures ranging from 300 °C to 850 °C on graphene. Through Raman spectroscopy analysis in a nitrogen environment, the temperature-induced defect increase is observed to occur between 400 °C and 500 °C.
Conventional high-electron-mobility transistors based on gallium nitride typically undergo high-temperature annealing to form better ohmic contacts. The specific contact resistivity (ρc) of the conventional specific ohmic contact is 7.3×10-5 Ω·cm2. Introducing graphene into the ohmic contact region can effectively reduce its specific contact resistivity to 8.1×10-6 Ω·cm2. Through transfer length method analysis and fitting observations, the interface barrier height in the thermionic field emission (TFE) model is reduced from 1.02 eV for the traditional ohmic contact to 0.83 eV for graphene insert layer ohmic contacts, explaining the decrease in contact resistance.
Recessed ohmic contacts have also been proven to be an effective method for reducing ohmic contact resistance. In this study, 2×48 μm2 rectangular recesses are introduced, and graphene insert layer, effectively reducing the contact resistance to 1.36 Ω·mm. Compared to the traditional ohmic contact resistance of 4.13 Ω·mm, this represents a 67.1% reduction. Furthermore, introducing oxygen plasma treatment during fabrication effectively removes the additional current paths caused by graphene, allowing the device to achieve good on/off characteristics.
關鍵字(中) ★ 氮化鎵
★ 石墨烯
關鍵字(英) ★ GaN
★ Graphene
論文目次 摘要..........................................................................................................................................VI
Abstract................................................................................................................................. VII
致謝.......................................................................................................................................VIII
圖目錄......................................................................................................................................XI
表目錄...................................................................................................................................XIV
第一章 緒論.......................................................................................................................... 1
1.1 前言 ......................................................................................................................... 1
1.2 氮化鎵材料特性 ..................................................................................................... 2
1.3 氮化鎵電晶體歐姆接觸發展概況 ......................................................................... 3
1.3.1 傳統式歐姆接觸........................................................................................................... 4
1.3.2 離子佈植式歐姆接觸................................................................................................... 5
1.3.3 挖槽式歐姆接觸........................................................................................................... 6
1.3.4 低溫退火歐姆接觸..................................................................................................... 10
1.4 研究動機與目的 ................................................................................................... 12
1.5 論文架構 ............................................................................................................... 12
第二章 氮化鎵接觸電阻特性分析.................................................................................... 13
2.1 AlGaN/GaN 磊晶片結構及特性量測................................................................... 13
2.1.1 AlGaN/GaN HEMT 磊晶片......................................................................................... 13
2.1.2 傳輸線模型................................................................................................................. 14
2.2 石墨烯轉印品質與基本電性研究分析 ............................................................... 15
2.2.1 乾式轉印石墨烯流程................................................................................................. 15
2.2.2 拉曼光譜分析............................................................................................................. 16
2.2.3 石墨烯表面處理影響分析......................................................................................... 16
X
2.2.4 溫度對石墨烯影響分析............................................................................................. 21
2.2.5 石墨烯電流路徑分析................................................................................................. 22
2.3 石墨烯對接觸電阻影響之分析 ........................................................................... 25
2.3.1 不同表面處理對接觸電阻之影響............................................................................. 25
2.3.2 歐姆接觸接面等效能障與離子參雜濃度擬合......................................................... 27
2.4 結論 ....................................................................................................................... 33
第三章石墨烯應用在挖槽式歐姆接觸氮化鎵電晶體元件製作與電性分析.................. 34
3.1 挖槽式石墨烯歐姆接觸電晶體佈局 ................................................................... 34
3.2 元件製作流程 ....................................................................................................... 36
3.3 挖槽式石墨烯歐姆接觸之氮化鎵高電子遷移率電晶體電性量測分析 ........... 39
3.4 結論 ....................................................................................................................... 42
第四章 結論........................................................................................................................ 43
參考文獻.................................................................................................................................. 44
附錄Ⅰ 石墨烯乾式轉印製程流程........................................................................................ 47
附錄Ⅱ 元件製程流程............................................................................................................ 48
附錄 III W 公司 AlGaN/GaN 磊晶片採用挖槽式石墨烯歐姆接觸之電晶體電性量測分析51
參考文獻 [1] N. Wu, Z. Xing, S. Li, L. Luo, F. Zeng, and G. Li, “GaN-based power
high-electron-mobility transistors on Si substrates: from materials to devices,”
Semiconductor Science and Technology, vol. 38, no. 6, 2023.
[2] G. Sorrentino, M. Melito, A. Patti, G. Parrino, and A. Raciti, “GaN HEMT devices
Experimental results on normally-on normally-off and cascode configuration,” IECON
2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 816-821,
2013.
[3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. K. Chu, M. J. Murphy, W. J.
Schaff, L. F. Eastman, R. Dimitrov, L. L. Wittmer, M. Stutzmann, W. Rieger, and J.
Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric
polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of
Applied Physics, vol. 85, pp. 3222-3233, 1999.
[4] N.-Q. a. M. Zhang, B. and DenBaars, S.P. and Mishra, U.K. and Wang, X.W. and Ma,
T.P., “Effects of surface traps on breakdown voltage and switching speed of GaN power
switching HEMTs,” IEEE International Electron Devices Meeting, pp. 25.5.1-25.5.4,
2001.
[5] S. N. Mohammad, “Contact mechanisms and design principles for Schottky contacts to
group-III nitrides,” Journal of Applied Physics, vol. 97, no. 6, 2005.
[6] G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,”
Applied Surface Science, vol. 383, pp. 324-345, 2016.
[7] M. W. Fay, G. Moldovan, N. J. Weston, P. D. Brown, I. Harrison, K. P. Hilton, A.
Masterton, D. Wallis, R. S. Balmer, M. J. Uren, and T. Martin, “Structural and
electrical characterization of AuPdAlTi ohmic contacts to AlGaN∕GaN with varying Ti
content,” Journal of Applied Physics, vol. 96, no. 10, pp. 5588-5595, 2004.
[8] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad,
“Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer
Ohmic contacts to n-type GaN,” Journal of Applied Physics, vol. 93, no. 2, pp.
1087-1094, 2002.
[9] F. M. Mohammed, L. Wang, I. Adesida, and E. Piner, “The role of barrier layer on
Ohmic performance of Ti ∕ Al-based contact metallizations on AlGaN ∕ GaN
heterostructures,” Journal of Applied Physics, vol. 100, no. 2, 2006.
[10] Y. Haijiang, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra,
45
“Ion implanted AlGaN-GaN HEMTs with nonalloyed Ohmic contacts,” IEEE Electron
Device Letters, vol. 26, no. 5, pp. 283-285, 2005.
[11] M. Placidi, A. Pérez-Tomás, A. Constant, G. Rius, N. Mestres, J. Millán, and P.
Godignon, “Effects of cap layer on ohmic Ti/Al contacts to Si+ implanted GaN,”
Applied Surface Science, vol. 255, no. 12, pp. 6057-6060, 2009.
[12] L. Hyung-Seok, L. Dong Seup, and T. Palacios, “AlGaN/GaN High-Electron-Mobility
Transistors Fabricated Through a Au-Free Technology,” IEEE Electron Device Letters,
vol. 32, no. 5, pp. 623-625, 2011.
[13] M. a. D. Hajlasz, J. J. T. M. and Sque, S. J. and Heil, S. B. S. and Gravesteijn, D. J. and
Rietveld, F. J. R. and Schmitz, J., “Characterization of recessed Ohmic contacts to
AlGaN/GaN,” Proceedings of the 2015 International Conference on Microelectronic
Test Structures, pp. 158-162, 2015.
[14] B. Benakaprasad, A. M. Eblabla, X. Li, K. G. Crawford, and K. Elgaid, “Optimization
of Ohmic Contact for AlGaN/GaN HEMT on Low-Resistivity Silicon,” IEEE
Transactions on Electron Devices, vol. 67, no. 3, pp. 863-868, 2020.
[15] 陳智偉, “氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作,”碩士論文,
國立中央大學電機工程學系, 桃園, 2020.
[16] 游欣容, “挖洞式無金歐姆接觸之氮化鎵高電子遷移率電晶體,” 碩士論文, 國立
中央大學電機工程學系, 桃園, 2021.
[17] Y.-K. Lin, J. Bergsten, H. Leong, A. Malmros, J.-T. Chen, D.-Y. Chen, O. Kordina, H.
Zirath, E. Y. Chang, and N. Rorsman, “A versatile low-resistance ohmic contact process
with ohmic recess and low-temperature annealing for GaN HEMTs,” Semiconductor
Science and Technology, vol. 33, no. 9, 2018.
[18] P. Sung Park, K. M. Reddy, D. N. Nath, Z. Yang, N. P. Padture, and S. Rajan, “Ohmic
contact formation between metal and AlGaN/GaN heterostructure via graphene
insertion,” Applied Physics Letters, vol. 102, no. 15, 2013.
[19] M. S. Choi, S. H. Lee, and W. J. Yoo, “Plasma treatments to improve metal contacts in
graphene field effect transistor,” Journal of Applied Physics, vol. 110, no. 7, 2011.
[20] M. a. K. Okamoto, K. and Kataoka, Y. and Nishiyama, A. and Sugii, N. and
Wakabayashi, H. and Tsutsui, K. and Iwai, H. and Saito, W., “Dependence of Ti/C ratio
on Ohmic contact with tic electrode for AlGaN/GaN structure,” IEEE Workshop on
Wide Bandgap Power Devices and Applications, pp. 94-97, 2014.
[21] F. Iucolano, F. Roccaforte, A. Alberti, C. Bongiorno, S. Di Franco, and V. Raineri,
46
“Temperature dependence of the specific resistance in Ti∕Al∕Ni∕Au contacts on
n-type GaN,” Journal of Applied Physics, vol. 100, no. 12, 2006.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明