博碩士論文 107553002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.188.18.32
姓名 洪健倫(Chien-Lun Hung)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 DFT-s-OFDM 通訊波型特性與 PAPR 降低方法研究
(Research of waveform characteristics and PAPR reduction method for DFT-s-OFDM communication)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
★ 基於輔助波束對之UAV追蹤方法實現★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) DFT-s-OFDM ( Discrete Fourier Transform-spread Orthogonal Frequency Division Multiplexing)離散傅立葉變換展開正交分頻多重技術是一種用於通信系統的調製技術。它 結合了離散傅立葉轉換(DFT)和正交分頻多工(OFDM),具有較好的頻譜效率和抗多 徑衰退能力。然而DFT-s-OFDM系統的波形特性存在一些問題,例如峰均功率比(PAPR) 較高,會導致系統性能下降和功率放大器的非線性失真。為瞭解決這些問題,本研究針對 DFT-s-OFDM通信系統進行了波形特性的分析和PAPR降低方法的研究。首先對 DFT-s-OFDM訊號的頻譜進行了詳細分析,探討了其頻譜特性和幅度分佈。然後通過模擬 實驗和數學推導,驗證了系統的PAPR較高的問題,並分析了其原因。在PAPR降低方法的 研究中,本研究提出了一種基於部分傅立葉轉換(PFT)的技術。該方法通過將訊號分成 多個子訊號,並對每個子訊號進行PFT處理,從而減小了整體訊號的PAPR。同時,通過引 入合適的旋轉因數和相位調製技術,可以在降低PAPR的同時使用CCDF對OFDM、SLM、 PTS和DFT-s-OFDM進行性能評估可以提供有價值的洞察力,了解它們在減少PAPR、處理 高功率峰值和保持無線通訊系統所需的QoS方面的能力。通過分析CCDF曲線,我們可以確 定每種技術在減少信號失真和優化系統性能方面的效果。通過對DFT-s-OFDM通信系統的 波形特性和PAPR進行研究,本研究為系統的優化提供了重要的理論依據和實踐指導。該研 究的成果有望在高效率、高可靠性的通信系統設計中得到應用,並為未來無線通訊技術的 發展提供借鑒和參考。
摘要(英) Abstract
DFT-s-OFDM (Discrete Fourier Transform-spread Orthogonal Frequency Division Multiplexing) is a modulation technique used in communication systems. It combines the advantages of Discrete Fourier Transform (DFT) and spread Orthogonal Frequency Division Multiplexing (OFDM), offering improved spectral efficiency and resistance to multipath fading. However, DFT-s-OFDM systems exhibit some waveform characteristic issues, such as high Peak-to-Average Power Ratio (PAPR), which can lead to performance degradation and non-linear distortion in power amplifiers. To address these issues, this research focuses on the analysis of waveform characteristics and the study of PAPR reduction methods for DFT-s-OFDM communication systems. Firstly, a detailed analysis of the spectral properties and amplitude distribution of DFT-s-OFDM signals is conducted. Through simulation experiments and mathematical derivations, the problem of high PAPR in the system is verified and analyzed. In the study of PAPR reduction methods, a technique based on Partial Fourier Transform (PFT) is proposed. This method divides the signal into multiple sub-signals and applies PFT processing to each sub-signal, thereby reducing the overall signal′s PAPR. By introducing appropriate rotation factors and phase modulation techniques, it is possible to reduce PAPR while maintaining low bit error rate performance. By investigating the waveform characteristics and PAPR of DFT-s-OFDM communication systems, this research provides important theoretical foundations and practical guidance for system optimization. The findings of this study are expected to be applied in the design of high-efficiency and high-reliability communication systems, while also serving as a reference for the future development of wireless communication technologies.
關鍵字(中) ★ OFDM
★ PAPR
★ DFT-s-OFDM
關鍵字(英)
論文目次 目錄 致謝.............................................................................................................................................i
中文摘要.................................................................................................................................. iii Abstract ......................................................................................................................................v 目錄...........................................................................................................................................vi
圖目錄.......................................................................................................................................ix 第一章 緒論 ............................................................................................................................ 1
1-1 前言 ............................................................................................................................ 1
1-2 研究動機與目的.........................................................................................................1
1-3 研究方法..................................................................................................................... 2
1-4 論文架構..................................................................................................................... 2
第二章 PAPR 及 SLM 相關的原理 ........................................................................................3 2-1 OFDM (Orthogonal frequency-division multiplexing) .................................................3 2-1.1 應用範例..................................................................................................................4
2-1.2 主要特點..................................................................................................................6
2-1.3 特性及操作原理 ......................................................................................................7
2-2 峰對平均功率比 PAPR(Peak-to-Average Power Ratio).........................................9
2-3 選擇性映射(Selective Mapping, SLM) .....................................................................12
2-4 DFT-s-OFDM ........................................................................................................... 14
第三章 模擬研究方法及模擬實驗架構 ................................................................................ 18
3-1 模擬研究方法 ........................................................................................................... 18 vi
3-1.1 頻道模型:...............................................................................................................19
3-1.2 子載波數量和 OFDM 符號數: .............................................................................. 19
3-1.3 OFDM 技術比較:...................................................................................................20
3-1.4 信號生成與傳輸: ................................................................................................... 20
3-1.5 性能評估與分析 .................................................................................................... 21
3-2 模擬實驗架構 ........................................................................................................... 21
3-3 模擬實驗參數 ........................................................................................................... 24
3-3.1 OFDM SLM 參數.................................................................................................. 24
3-3.2 OFDM PTS 參數 ................................................................................................... 25
3-3.3 DFT-s-OFDM SLM 參數 ...................................................................................... 25
3-3.4 DFT-s-OFDM PTS 參數........................................................................................ 26
第四章 研究結果................................................................................................................... 27
4-1 目的 .......................................................................................................................... 27
4-2 實驗方法................................................................................................................... 27
4-3 實驗結果................................................................................................................... 29
4-3.1 參數設定................................................................................................................30
4-3.2 64-QAM 與 256 點 OFDM 系統性能的比較 ......................................................... 32
4-3.3 QPSK 與 256 點 OFDM 系統性能的比較 ............................................................. 34
4-3.4 64-QAM 調變在 256 點 OFDM 中的 4-subblock TPS 與 SLM 性能比較.............35
4-3.5 QPSK 調變在 256 點 OFDM 中的 4-subblock TPS 與 SLM 性能比較 ................. 36
vii

4-3.6 64-QAM 調變在 N 點 DFT DFT-s-OFDM 中的 4-subblock TPS 與 SLM 性能比較 ................................................................................................................................ 37
4-3.7 64-QAM 調變在 N/2 點 DFT DFT-s-OFDM 中的 4-subblock TPS 與 SLM 性能比較 ............................................................................................................................... 39 4-3.8 ..QPSK調變在N/2點DFTDFT-s-OFDM中的4-subblockTPS與SLM性能比較 ................................................................................................................................ 40
4-3.9 64-QAM 調變在 N/4 點 DFT DFT-s-OFDM 中的 4-subblock TPS 與 SLM 的性能比
較 ................................................................................................................................ ................................................................................................................................ 41 4-3.10.. QPSK 調變在 N/4 點 DFT DFT-s-OFDM 中的 4-subblock TPS 與 SLM 性能比較 ................................................................................................................................ 43 4-3.11 對 CCDF 系統性能的性能比較結論 ..................................................................... 44
第五章 結論及未來展望 ....................................................................................................... 47 參考文獻 .................................................................................................................................. 50
viii

圖目錄
圖 1 FFT 後的 OFDM 信號的子載波系統................................................................................. 8 圖 2 Transmitter.......................................................................................................................... 9 圖 3 Receiver .............................................................................................................................. 9 圖 4 選擇性映射 Selective Mapping........................................................................................ 13 圖 5 PTS 模型 .......................................................................................................................... 22 圖 6 模型 DFT-s-OFDM ............................................................................................................ 28 圖 7 64-QAM, 256-pt OFDM (N=256) DFT-s-OFDM with N, N/2, N/4, N/8-pt DFT............... 34 圖 8 QPSK, 256-pt OFDM (N=256) DFT-s-OFDM with N, N/2, N/4, N/8-pt DFT ................... 35 圖 9 64-QAM, 256-pt OFDM 4-subblock TPS vs SLM............................................................. 36 圖 10 QPSK, 256-pt OFDM 4-subblock TPS vs SLM ............................................................... 37 圖 11 64-QAM, N-pt DFT DFT-s-OFDM 4-subblock TPS vs SLM .......................................... 39 圖 12 64-QAM, N/2-pt DFT DFT-s-OFDM 4-subblock TPS vs SLM ....................................... 40 圖 13 QPSK, N/2-pt DFT DFT-s-OFDM 4-subblock TPS vs SLM............................................ 41 圖 14 64-QAM, N/4-pt DFT DFT-s-OFDM 4-subblock TPS vs SLM ....................................... 42 圖 15 QPSK, N/4-pt DFT DFT-s-OFDM, 4-subblock TPS vs SLM........................................... 44
ix
參考文獻 [1] Lipfert, Hermann (August 2007). MIMO OFDM Space Time Coding – Spatial Multiplexing, Increasing Performance and Spectral Efficiency in Wireless Systems, Part I Technical Basis (Technical report). Institut für Rundfunktechnik.
[2] Berger, Lars T.; Schwager, Andreas; Pagani, Pascal; Schneider, Daniel M. (February 2014). MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing. Devices, Circuits, and Systems. CRC Press. doi:10.1201/b16540-1. ISBN 978-1-4665-5752-9.
[3] Kaye, AR; George, DA (October 1970). "Transmission of multiplexed PAM signals over multiple channel and diversity systems". IEEE Transactions on Communication Technology. 18 (5): 520–526. doi:10.1109/TCOM.1970.1090417.
[4] Salz, J (July–August 1985). "Digital transmission over cross-coupled linear channels". Technical Journal. 64 (6): 1147–59. Bibcode:1985ATTTJ..64.1147S. doi:10.1002/j.1538-7305.1985.tb00269.x. S2CID 10769003.
[5] US 5515378, "Spatial division multiple access wireless communication systems"
[6] US 5345599, "Increasing capacity in wireless broadcast systems using distributed
transmission/directional reception (DTDR)"
[7] "Arogyaswami Paulraj – Marconi Society". marconisociety.org. Retrieved 2017-01-21.
[8] Raleigh, Gregory; Cioffi, John M. (1996). Spatio-temporal coding for wireless
communications (PDF). Global Telecommunications Conference, 1996. London, UK
November 18–22, 1996.
[9] Foschini, GJ (Autumn 1996). "Layered space–time architecture for wireless communication
in a fading environment when using multiple antennas". Labs Syst. Tech. J. 1 (2): 41–59.
doi:10.1002/bltj.2015. S2CID 16572121.
[10] Jones, V.K.; Raleigh, G.G. Channel estimation for wireless OFDM systems. IEEE
GLOBECOM 1998 Conference. Sydney, Australia 08 Nov 1998-12 Nov 1998. 2. pp. 980–
985. doi:10.1109/GLOCOM.1998.776875.
[11] Junnarkar, Sandeep (15 September 1998). "Cisco to buy Clarity Wireless". CBS Interactive
Inc. Retrieved 28 October 2013.
[12] Golden, GD; Foschini, GJ; Valenzuela, RA; Wolniansky, PW (Jan 1999). "Detection
50
algorithm and initial laboratory results using V-BLAST space–time communication architecture". Electronics Letters. 35 (1): 14–16. Bibcode:1999ElL....35...14G. doi:10.1049/el:19990058. S2CID 62776307.
[13] Gregson, Reily (27 February 2003). "Iospan ceases operations". RCR Wireless. Retrieved 22 January 2015.
[14] Sampath, Hemanth; et al. (2002). "A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results". IEEE Communications Magazine. 40 (9): 143–149. CiteSeerX 10.1.1.4.7852. doi:10.1109/MCOM.2002.1031841.
[15] Ngo, Dong (11 September 2009). "802.11n Wi-Fi standard finally approved". CNET. CBS Interactive Inc. Retrieved 28 October 2013.
[16] Goldstein, Phil (7 October 2014). "Sprint to shutter WiMAX network around Nov. 6, 2015". FierceWireless. FierceMarkets. Retrieved 22 January 2015.
[17] B. Kumbhani, R S Kshetrimayum (2017). MIMO Wireless Communications over Generalized Fading Channels. CRC Press.
[18] Karakayali, M.K.; Foschini, G.J.; Valenzuela, R.A. (2006). "Advances in smart antennas – Network coordination for spectrally efficient communications in cellular systems". IEEE Wireless Communications. 13 (4): 56–61. doi:10.1109/MWC.2006.1678166. S2CID 34845122.
[19] Gesbert, David; Hanly, Stephen; Huang, Howard; Shamai Shitz, Shlomo; Simeone, Osvaldo; Yu, Wei (2010). "Multi-Cell MIMO Cooperative Networks: A New Look at Interference". IEEE Journal on Selected Areas in Communications. 28 (9): 1380–1408. CiteSeerX 10.1.1.711.7850. doi:10.1109/JSAC.2010.101202. S2CID 706371.
[20] Björnson, Emil; Jorswieck, Eduard (2013). "Optimal Resource Allocation in Coordinated Multi-Cell Systems". Foundations and Trends in Communications and Information Theory. 9 (2–3): 113–381. doi:10.1561/0100000069.
[21] Basnayaka, Dushyantha A.; Smith, Peter J.; Martin, Phillipa A. (2013). "Performance Analysis of Macrodiversity MIMO Systems with MMSE and ZF Receivers in Flat Rayleigh Fading". IEEE Transactions on Wireless Communications. 12 (5): 2240–2251. arXiv:1207.6678. doi:10.1109/TWC.2013.032113.120798. S2CID 14067509.
[22] Marzetta, Thomas L. (2010). "Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas". IEEE Transactions on Wireless Communications. 9 (11): 3590–
51

3600. doi:10.1109/TWC.2010.092810.091092. S2CID 17201716.
[23] MIMO Wireless Networks Channels, Techniques and Standards for Multi-Antenna,
Multi-User and Multi-Cell Systems. By Bruno Clerckx and Claude Oestges (Auth.) (2013)
section 1.8
[24] Mustafa Ergen (2009). Mobile Broadband: including WiMAX and LTE. Springer
Science+Business Media. doi:10.1007/978-0-387-68192-4. ISBN 978-0-387-68189-4.
[25] Weinstein, S. B. (November 2009). "The history of orthogonal frequency-division multiplexing". IEEE Communications Magazine. IEEE Communications Magazine
( Volume: 47, Issue: 11, November 2009 ). 47 (11): 26–35.
doi:10.1109/MCOM.2009.5307460. S2CID 29001312.
[26] Chang, R. W. (1966). "Synthesis of band-limited orthogonal signals for multi-channel data
transmission". Bell System Technical Journal. 45 (10): 1775–1796.
doi:10.1002/j.1538-7305.1966.tb02435.x.
[27] Ahmad R. S. Bahai, Burton R. Saltzberg, Mustafa Ergen, Multi-carrier digital
communications - Theory and applications of OFDM. Springer (November 2004 )
[28] Akansu, Ali; et al. (1998). "Orthogonal transmultiplexers in communication: a review"
(PDF). IEEE Transactions on Signal Processing. IEEE Trans. On Signal Processing, Vol. 46, No. 4, April 1998. 46 (4): 979–995. Bibcode:1998ITSP...46..979D. CiteSeerX 10.1.1.46.3342. doi:10.1109/78.668551.
[29] Ben-Tovim, Erez (February 2014). "ITU G.hn - Broadband Home Networking". In Berger, Lars T.; Schwager, Andreas; Pagani, Pascal; Schneider, Daniel M. (eds.). MIMO Power Line Communications. Devices, Circuits, and Systems. CRC Press. pp. 457–472. doi:10.1201/b16540-16. ISBN 9781466557529.
[30] S. Khademi and A. van der Veen, “Constant Modulus Algorithm for Peak-to-Average Power Ratio (PAPR) Reduction in MIMO OFDM/A,” IEEE Signal Processing Letters, vol. 20, no. 5, pp. 531–534, May 2013.
[31] T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Transactions on Broadcasting, vol. 54, no. 2, pp. 257–268, June 2008.
[32] M. Soltanalian and P. Stoica, “Designing Unimodular Codes Via Quadratic Optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 5, pp. 1221–1234, March 2014.
52

[33] H. He, J. Li, and P. Stoica, Waveform design for active sensing systems: a computational approach, Cambridge University Press, 2012.
[34] J. A. Tropp, I. S. Dhillon, R. W. Heath, and T. Strohmer, “Designing structured tight frames via an alternating projection method,” IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 188–209, Jan 2005.
指導教授 張大中(Dah-Chung Chang) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明