博碩士論文 109553015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:3.133.158.95
姓名 蘇慧敏(Huei-Min Su)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 卷積神經網絡模型在無人機碰撞迴避數據集上的性能分析
(Performance Evaluation of CNN Models for Drone Collision Avoidance Dataset)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-21以後開放)
摘要(中) 人工智慧隨著互聯網上龐大的圖像數據不斷增加也以加速的速度演進。無人機(UAVs)也是一種近幾年來具有影響力的新趨勢。然而,在使用UAVs引發了一些安全問題,如與動態障礙物(鳥類、其他飛機或隨機拋擲的物體)的碰撞。這些問題錯綜複雜,有時無法通過最先進的算法來完全避免,對應用程序構成潛在威脅。
為了應對這些安全問題,推出了一個開創性的項目,名為ColANet,這是一個新的碰撞視頻數據集,旨在為訓練最先進的機器學習算法提供基礎,以高效處理碰撞迴避問題。而ColANet的主要目標是使這些算法能夠有效應對碰撞迴避問題的複雜性。ColANet不僅有助於訓練各種神經網絡模型,還展示了測試其有效性的便利性。
這項研究具體針對使用YOLOv8技術進行UAV碰撞避免性能分析。實驗結果顯示,YOLOv8大幅提高了效率,為UAV碰撞避免系統的改進提供了有價值的見解。隨著UAV在各個行業中發揮著重要作用,這項研究的結果成為一個有價值的參考,強調了YOLOv8在顯著提高UAV碰撞避免系統效率和安全性方面的潛力。
摘要(英) Artificial intelligence is evolving rapidly alongside the exponential growth of image data on the Internet. Unmanned Aerial Vehicles (UAVs) have also emerged as a influential trend in recent years. However, the use of UAVs has raised safety concerns, particularly regarding collisions with dynamic obstacles such as birds, other aircraft, or randomly thrown objects. These issues are complex and sometimes cannot be entirely avoided even with state-of-the-art algorithms, posing potential threats to applications.
To address these safety concerns, a groundbreaking initiative called ColANet has been introduced. ColANet is a novel collision video dataset designed to serve as a foundation for training state-of-the-art machine learning algorithms to efficiently handle collision avoidance problems. The primary objective of ColANet is to empower these algorithms to effectively address the complexity of collision avoidance problems. ColANet not only facilitates the training of various neural network models but also showcases the ease of testing their effectiveness.
This research specifically focuses on the performance analysis of UAV collision avoidance using the YOLOv8 technology. The experimental results demonstrate that YOLOv8 significantly improves efficiency, providing valuable insights for enhancing UAV collision avoidance systems. As UAVs play a crucial role in various industries, the findings of this study serve as a valuable reference, emphasizing the potential of YOLOv8 in significantly improving the efficiency and safety of UAV collision avoidance systems.
關鍵字(中) ★ 深度學習
★ 影像偵測
關鍵字(英) ★ YOLO
★ Object detection
論文目次 目錄
摘要 I
Abstract II
圖目錄 III
表目錄 IV
第一章、 緒論 1
1.1 研究背景 1
1.2 研究目標 5
第二章、 介紹CNN Models 6
2.1 介紹 6
2.2 CNNs理論 7
2.2.1 核心建構 8
2.2.2 激活函數 8
2.2.3 損失函數 9
2.2.4 卷積層 9
2.2.5池化層 9
2.3 具影響力的CNN Models 10
2.3.1 AlexNet 10
2.3.2 VGG 11
2.3.3 GoogleNet (Inception) 11
2.3.4 ResNet 12
第三章、 實驗設定 13
3.1 實驗介紹 13
3.2 實驗資料庫建立 13
3.3 模型的選擇 14
3.4 性能評估指標 18
3.5 實驗步驟 20
3.6 概要 20
第四章、 實驗結果 20
4.1 計算效率與實時處理 20
4.2 預測性能和準確性 22
4.3 效率與準確性之間的權衡 24
4.4 YOLOv8n-cls在無人飛行器碰撞迴避中的適用性 24
4.5 小結 24
第五章、 結論 24
參考文獻 26
參考文獻 [1] Andert, Franz & Strickert, Gordon & Thielecke, Frank. (2006). Depth Image Processing for Obstacle Avoidance of an Autonomous VTOL UAV.
[2] Dário Pedro, André Mora, João Carvalho, Fábio Azevedo, José Fonseca. ColANet: A UAV Collision Avoidance Dataset. 11th Doctoral Conference on Computing, Electrical and Industrial Systems,(DoCEIS), 2020,Costa de Caparica, Portugal. pp.53-62, ff10.1007/978-3-030-45124-0_5.
[3]UAV Collision Avoidance,https://github.com/dario-pedro/uav-collision-avoidance
[4]Chen, Cheng, Zian Wang, Zheng Gong, Pengcheng Cai, Chengxi Zhang, and Yi Li. ,"Autonomous Navigation and Obstacle Avoidance for Small VTOL UAV in Unknown Environments" ,Symmetry 14, no. 12: 2608. https://doi.org/10.3390/sym14122608,2022.
[5]Lee, Sunwoo, Dongkyu Lee, and Seok-Cheol Kee. 2022. "Deep-Learning-Based Parking Area and Collision Risk Area Detection Using AVM in Autonomous Parking Situation" Sensors 22, no. 5: 1986. https://doi.org/10.3390/s22051986
[6]R. N. Zufar and D. Banjerdpongchai, "Performance Comparison of Lightweight CNN Models for Drone Collision Avoidance Dataset," 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023, pp. 1-6, doi: 10.1109/ECTI-CON58255.2023.10153233.
[7]Pedro, Dário, João Pedro Matos-Carvalho, José Manuel Fonseca and André Damas Mora. “Collision Avoidance on Unmanned Aerial Vehicles Using Neural Network Pipelines and Flow Clustering Techniques.” Remote. Sens. 13 (2021): 2643.
[8]Santos, Ricardo, João Pedro Matos-Carvalho, Slavisa Tomic, Marko Beko and Sérgio Duarte Correia. “A Hybrid LSTM-based Neural Network for Satellite-less UAV Navigation.” 2023 6th Conference on Cloud and Internet of Things (CIoT) (2023): 91-97.
[9] Prasad, Deepak, Ieee S. Thanikai Adhithiyan Member, Kondru Thanmai and Gourinath Banda. “PAVeDS: A Synthetic Dataset for Developing Autonomous Personal Aerial Vehicles.” IEEE Access 11 (2023): 101556-101566.
[10]Zufar, Rifqi Nabila and David Banjerdpongchai. “Performance Comparison of Lightweight CNN Models for Drone Collision Avoidance Dataset.” 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2023): 1-6.
[11] Pedro, Dário, João Pedro Matos-Carvalho, Fábio Azevedo, Ricardo Sacoto-Martins, Luís Bernardo, Luís Miguel Campos, José Manuel Fonseca and André Damas Mora. “FFAU - Framework for Fully Autonomous UAVs.” Remote. Sens. 12 (2020): 3533.
[12] Chilkunda, Adarsh, Sarah Nakama, Vikram Chilkunda, Dário Pedro, João Pedro Matos-Carvalho and Luís Miguel Campos. “UAV-based Scenario Builder and Physical Testing platform for Autonomous Vehicles.” 2023 6th Conference on Cloud and Internet of Things (CIoT) (2023): 77-84.
[13] Scanavino, Matteo, Arrigo Avi, Andrea Vilardi and Giorgio Guglieri. “Unmanned Aircraft Systems Performance in a Climate-Controlled Laboratory.” Journal of Intelligent & Robotic Systems 102 (2021): 1-16.
[14]Saunders, Jack, Sajad Saeedi and Wenbin Li. “Autonomous Aerial Delivery Vehicles, a Survey of Techniques on how Aerial Package Delivery is Achieved.” ArXiv abs/2110.02429 (2021): n. pag.
[15] Azevedo, Fábio, Jaime S. Cardoso, André Ferreira, Tiago A. Fernandes, Miguel Moreira and Luís Miguel Campos. “Efficient Reactive Obstacle Avoidance Using Spirals for Escape.” Drones (2021): n. pag.
[16] Moreira, Miguel, Fábio Azevedo, André Ferreira, Dário Pedro, João Pedro Matos-Carvalho, Álvaro Ramos, Rui Loureiro and Luís Miguel Campos. “Precision Landing for Low-Maintenance Remote Operations with UAVs.” Drones (2021): n. pag.
[17] Gao Huang, , Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. "Densely Connected Convolutional Networks." (2018).
[18] Mingxing Tan, , and Quoc V. Le. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks." (2020).
[19]Andrew G. Howard, , Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications." (2017).
[20] Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by Ultralytics (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics
[21] Joseph Redmon, , Santosh Divvala, Ross Girshick, and Ali Farhadi. "You Only Look Once: Unified, Real-Time Object Detection." (2016).
[22] Krizhevsky, A., Sutskever, I., Hinton, G.E.: "ImageNet classification with deep convolutional neural networks." In: Advances in neural information processing systems. pp. 1097–1105 (2012).
[23] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: "Backpropagation applied to handwritten zip code recognition." Neural computation 1(4), 541–551 (1989).
[24] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86(11), 2278–2324 (1998).
[25] Zeiler, M.D., Fergus, R.: "Visualizing and understanding convolutional networks." In: Computer Vision–ECCV 2014, pp. 818–833. Springer (2014).
[26] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: "OverFeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).
[27] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: "Large-scale video classification with convolutional neural networks." In: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. pp. 1725–1732. IEEE (2014).
[28] He, K., Gkioxari, G., Dollár, P., Girshick, R.: "Mask R-CNN." In: Proceedings of the IEEE international conference on computer vision. pp. 2961–2969 (2017).
[29] Mohammed Jouhari et al.: "Distributed CNN Inference on Resource-Constrained UAVs for Surveillance Systems: Design and Optimization." ar5iv.org/abs/2105.11013 (2021).
[30] Zhiqing Wei et al.: "Anti-collision Technologies for Unmanned Aerial Vehicles: Recent Advances and Future Trends." ar5iv.org/pdf/2109.12832 (2021).
[31] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186.
[32] Agarap AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv:180308375. 2018.
[33] Janocha, Katarzyna & Czarnecki, Wojciech. (2017). On Loss Functions for Deep Neural Networks in Classification. Schedae Informaticae. 25. 10.4467/20838476SI.16.004.6185.
[34] S. Liu and W. Deng, "Very deep convolutional neural network based image classification using small training sample size," 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 2015, pp. 730-734, doi: 10.1109/ACPR.2015.7486599.
[35] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.
[36] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2023-12-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明