博碩士論文 109552006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.149.25.162
姓名 陳建源(Chein-Yuan Chen)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 農業機器人FarmBot感測控制網路閘道器設計與實作
(Design and Implementation of a Sensing and Control Network Gateway for Agricultural Robot FarmBot)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究基於FarmBot開源計畫,FarmBot設備端與控制端之間僅使用一對一的通訊方式來完成資料交換要求,難以在多個設備端之間進行通訊。然而,在現代農業自動化的快速發展中,需求日益增加的多設備同步操作成為一個重要的挑戰。因此,本研究旨在設計並實作一個感測控制網路閘道器,以提升一對多連線系統的效率,並使其能夠在農業自動化領域中發揮多樣化和智慧化的應用。設計方案融合了CAN Bus現場總線和BLE無線通訊技術,通過物聯網閘道器的建置,實現了多個FarmBot系統的同時監控和管理。感測控制網路閘道器作為中心節點,通過CAN Bus連接各種感測器,收集感測數據並進行分析。同時,它還通過BLE通訊協議將感測數據轉換為可供控制端接收和使用的格式。感測控制網路閘道器的設計具有高度的靈活性,可以根據需求新增或修改連接的感測設備,而這些設備只需要符合相應的通訊協議即可進行連接。這使得我們的系統能夠適應不斷變化的農業需求,並提供持續的技術升級和擴展性。透過本研究,將為農業自動化領域提供一個多設備操作的解決方案,這將推動農業生產的智能化和效率提升。未來的研究可以進一步優化閘道器的設計和功能,並將其應用於更廣泛的農業場景中,包括精緻農業、溫室種植、水耕系統和大規模農田管理等。同時,我們也可以探索其他通訊技術和協議的應用,以滿足不同農業環境和需求的多樣化要求。
摘要(英) This study is based on the FarmBot open-source project, where the communication between the FarmBot device and the control unit is limited to a one-to-one communication mode, which makes it challenging to enable communication among multiple devices. However, in the rapidly evolving field of modern agricultural automation, there is an increasing demand for simultaneous operation of multiple devices, posing a significant challenge. Therefore, this research aims to design and implement a sensor control network gateway to enhance the efficiency of one-to-many communication systems and enable diversified and intelligent applications in the field of agricultural automation.The proposed design integrates CAN Bus fieldbus technology and BLE wireless communication. By establishing an IoT gateway, the system enables simultaneous monitoring and management of multiple FarmBot systems. The sensor control network gateway serves as a central node, connecting various sensors through the CAN Bus, collecting sensor data, and performing data analysis. Additionally, it converts the sensor data into a format that can be received and utilized by the control unit through the BLE communication protocol.The design of the sensor control network gateway is highly flexible, allowing for easy addition or modification of connected sensor devices based on specific communication protocols. This adaptability enables our system to accommodate the evolving demands in agriculture while providing continuous technological upgrades and scalability. Through this research, we provide a solution for multi-device operation in the field of agricultural automation, contributing to the advancement of intelligent and efficient agricultural production.Future research can further optimize the design and functionality of the gateway and expand its application to a wider range of agricultural scenarios, including precision agriculture, greenhouse cultivation, hydroponic systems, and large-scale farm management. Additionally, exploring the application of other communication technologies and protocols can cater to the diverse requirements of different agricultural environments and needs.
關鍵字(中) ★ 閘道器
★ 農業機器人
★ 方法論
關鍵字(英) ★ Gateway
★ FarmBot
★ MIAT
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 vi
第一章 緒論 1
1.1研究背景 1
1.2 研究目的 3
1.3 論文架構 4
第二章 技術回顧 5
2.1 FarmBot開源計畫 5
2.1.1硬體架構 5
2.1.2軟體架構 6
2.2 FarmBot感測控制器網路 7
2.3 CAN Bus 8
2.3.1 CAN Bus標準 9
2.3.2 CAN2.0A 與 CAN2.0B 11
2.4 Bluetooth Low Energy, BLE 12
2.5 感測控制網路閘道器 15
第三章 系統設計 21
3.1 系統設計方法論 21
3.2 FarmBot感測控制網路閘道器系統架構 24
3.2.1 藍牙通訊子系統 25
3.2.2 感測器訊息子系統 27
3.2.3 通訊協議轉換子系統 28
3.2.4 CAN Bus通訊子系統 30
3.3 FarmBot感測控制網路閘道器高階軟體合成 32
3.3.1 藍牙通訊子系統高階軟體合成 32
3.3.2 感測器訊息子系統高階軟體合成 33
3.3.3 通訊協議轉換子系統高階軟體合成 33
3.3.4 CAN Bus通訊子系統高階軟體合成 34
第四章 實驗結果與討論 35
4.1 實驗平台 35
4.1.1 FarmBot介紹 35
4.1.2 感測器模組介紹 36
4.2 FarmBot感測控制網路閘道器 39
4.3 實驗與討論 44
4.3.1 設備端感測控制網路閘道器測試 44
4.3.2 控制端感測控制網路閘道器測試 45
4.3.3感測控制網路閘道器系統測試 46
第五章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 50
參考文獻 52

圖目錄
圖2.1、FarmBot 硬體結構 6
圖2.2、FarmBot軟體架構 7
圖2.3、OSI模型說明 8
圖2.4、CAN電位判讀表示 9
圖2.5、CAN Bus架構 10
圖2.7、CAN 2.0A資料格式 11
圖2.8、CAN 2.0B資料格式 11
圖2.9、Bluetooth 與Bluetooth Low Energy 差異比較 13
圖2.10、BLE架構 14
圖2.11、心律測量服務範例 15
圖2.12、BLE一對多連線機制 15
圖2.13、閘道器應用介紹 16
圖2.14、感測控制網路架構 18
圖2.15、C-V2X 應用架構 19
圖2.16、C-V2X應用情境 20
圖3.1、MIAT系統設計方法論的結構程序 21
圖3.2、IDEF0階層化及模組化系統架構 22
圖3.3、Grafcet 離散事件建模 23
圖3.4、FarmBot感測物聯網閘道器模組架構 24
圖3.5、FarmBot感測物聯網閘道器流程 24
圖3.6、藍牙訊號模組架構 25
圖3.7、藍牙訊號模組流程 26
圖3.8、感測器訊息模組架構 27
圖3.9、感測器訊息模組流程 28
圖3.10、通訊協議轉換模組架構 29
圖3.11、通訊協議轉換模組流程 29
圖3.12、CAN Bus通訊模組架構 30
圖3.13、CAN Bus通訊模組流程 31
圖3.14、軟體合成(Software Synthesis) 32
圖3.15、Fundamental Block 軟體合成轉換 32
圖3.16、藍牙訊號接收模組狀態轉移 33
圖3.17、感測器訊息子系統狀態轉移 33
圖3.18、通訊協議轉換子系統狀態轉移 34
圖3.19、CAN Bus通訊子系統狀態轉移 34
圖4.1、FarmBot 運動控制平台 35
圖4.2、FarmBot 內部架構圖 36
圖4.3、F103C8T6實驗板 36
圖4.4、STEVAL-MKI141V2實驗板 37
圖4.5、VL6180X實驗板 37
圖4.6、STEVAL-MKI192V1實驗板 37
圖4.7、電容式溼度感測器實驗板 38
圖4.8、TJA1040 CAN transceiver 38
圖4.9、STM32H750B-DK實驗板 39
圖4.10、FarmBot 感測控制網路閘道器 39
圖4.11、FarmBot 感測控制網路閘道器系統架構 40
圖4.12、感測控制網路閘道器實驗板 41
圖4.13、FarmBot感測控制網路閘道器使用者介面 43
圖4.14、FarmBot感測控制網路實驗環境 44
圖4.15、感測控制網路測試架構 45
圖4.16、感測器數據測試 45
圖4.17、控制端數據測試架構 46
圖4.18、控制端數據測試 46
圖4.19、控制端與設備端數據測試架構 47
圖4.20、控制端與Device 1數據測試 47
圖4.21、控制端與Device 2數據測試 48
圖4.22、控制端與設備端數據測試架構 48
圖4.23、設備端傳送數據至控制端測試 49
圖4.24、控制端傳送數據至設備端測試 49

表目錄
表2.1、CAN ID分配表 11
表2.2、MPU與MCU差異比較 17
表3.1、FarmBot感測物聯網閘道器Active事件 25
表3.2、藍牙訊號模組Active事件 26
表3.3、感測器訊息模組Active事件 28
表3.4、通訊協議轉換模組Active事件 30
表3.5、CAN Bus通訊模組Active事件 31
表4.1、感測器模組 CAN Bus 通訊協議表 41
表4.2、感測器運動控制模組 CAN Bus 通訊協議表 42
表4.3、Device ID CAN Bus 通訊協議表 42
表4.3、UART 通訊協議表 43
參考文獻 [1] N. H. Bahar, M. Lo, M. Sanjaya, J. Van Vianen, P. Alexander, A. Ickowitz, and T. Sunderland, "Meeting the food security challenge for nine billion people in 2050: What impact on forests," Glob. Environ. Chang, vol. 62, 2020, p. 102056.
[2] 許聖章 and 徐雅媛, "我國農業勞動力之運用分析," 勞動及職業安全衛生研究季刊, vol. 29, no. 2, 2021, pp. 132-150.
[3] D. Bochtis, L. Benos, M. Lampridi, V. Marinoudi, S. Pearson, and C. G. Sørensen, "Agricultural workforce crisis in light of the COVID-19 pandemic," Sustainability, vol. 12, no. 19, 2020, p. 8212.
[4] P. Kumar, S. Singh, A. Pandey, R. K. Singh, P. K. Srivastava, M. Kumar, S. K. Dubey, U. Sah, R. Nandan, and S. K. Singh, "Multi-level impacts of the COVID-19 lockdown on agricultural systems in India: The case of Uttar Pradesh," Agricultural Systems, vol. 187, 2021, p. 103027.
[5] N. Zhang, M. Wang, and N. Wang, "Precision agriculture—a worldwide overview," Computers and electronics in agriculture, vol. 36, no. 2-3, 2002, pp. 113-132.
[6] Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, "Study and application on the architecture and key technologies for IOT," in 2011 International Conference on Multimedia Technology, 2011, pp. 747-751.
[7] M. R. M. Kassim, "Iot applications in smart agriculture: Issues and challenges," in 2020 IEEE conference on open systems (ICOS), 2020, pp. 19-24.
[8] S. Gajjar, D. Kothari, M. Upadhyay, and V. Dhingra, "FARMNET: agriculture support system using wireless sensor and actuator network," in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2017, pp. 291-296.
[9] R. L. Aronson. (2013). The FarmBot Whitepaper. Available: https://farm.bot/pages/whitepaper
[10] S.-y. Lee, I.-b. Lee, U.-h. Yeo, R.-w. Kim, and J.-g. Kim, "Optimal sensor placement for monitoring and controlling greenhouse internal environments," biosystems engineering, vol. 188, 2019, pp. 190-206.
[11] P. Hemalatha, K. Dhanalakshmi, S. Matilda, and M. Bala Anand, "FarmBot-a smart agriculture assistor using internet of things," International Journal of Pure and Applied Mathematics, vol. 119, no. 10, 2018, pp. 557-566.
[12] N. Shanbhag, S. Tambosker, R. Bhagat, V. Gaonkar, D. Rodrigues, and F. Leitao, "Design of Sensor Nodes for Agricultural field monitoring Using IoT and BLE mesh technology," in 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2020, pp. 1-6.
[13] B. Ranjitha, M. Nikhitha, K. Aruna, and B. V. Murthy, "Solar powered autonomous multipurpose agricultural robot using bluetooth/android app," in 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 2019, pp. 872-877.
[14] J.-P. Thomesse, "Fieldbus technology in industrial automation," Proceedings of the IEEE, vol. 93, no. 6, 2005, pp. 1073-1101.
[15] U. Fugiglando, E. Massaro, P. Santi, S. Milardo, K. Abida, R. Stahlmann, F. Netter, and C. Ratti, "Driving behavior analysis through CAN bus data in an uncontrolled environment," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 2, 2018, pp. 737-748.
[16] O. I. Khalaf and B. M. Sabbar, "An overview on wireless sensor networks and finding optimal location of nodes," Periodicals of Engineering and Natural Sciences, vol. 7, no. 3, 2019, pp. 1096-1101.
[17] M. L. Tuballa and M. L. Abundo, "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, vol. 59, 2016, pp. 710-725.
[18] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, "An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges," IEEE Internet of things Journal, vol. 5, no. 5, 2018, pp. 3758-3773.
[19] V.-T. Bui, C.-R. Dow, Y.-C. Huang, P. Liu, and V. D. Thai, "A Canopen-based gateway and energy monitoring system for electric bicycles," Energies, vol. 13, no. 15, 2020, p. 3766.
[20] A. Ali, Y. Ming, S. Chakraborty, and S. Iram, "A comprehensive survey on real-time applications of WSN," Future internet, vol. 9, no. 4, 2017, p. 77.
[21] N. Shahrubudin, T. C. Lee, and R. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," Procedia Manufacturing, vol. 35, 2019, pp. 1286-1296.
[22] T. Indiketiya, "Smart and Interactive Laboratory Setup to Teach Controller Area Network Protocol," in 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2020, pp. 0797-0803.
[23] L. Ran, W. Junfeng, W. Haiying, and L. Gechen, "Design method of CAN BUS network communication structure for electric vehicle," in International Forum on Strategic Technology 2010, 2010, pp. 326-329.
[24] S.-H. Kim, S.-H. Seo, J.-H. Kim, T.-M. Moon, C.-W. Son, S.-H. Hwang, and J. W. Jeon, "A gateway system for an automotive system: LIN, CAN, and FlexRay," in 2008 6th IEEE International Conference on Industrial Informatics, 2008, pp. 967-972.
[25] E. Oriwoh, P. Sant, and G. Epiphaniou, "Guidelines for internet of things deployment approaches–the thing commandments," Procedia Computer Science, vol. 21, 2013, pp. 122-131.
[26] C. Olaverri-Monreal and T. Jizba, "Human factors in the design of human–machine interaction: An overview emphasizing V2X communication," IEEE Transactions on Intelligent Vehicles, vol. 1, no. 4, 2016, pp. 302-313.
[27] V. Mannoni, V. Berg, S. Sesia, and E. Perraud, "A comparison of the V2X communication systems: ITS-G5 and C-V2X," in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1-5.
[28] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, 2017, pp. 48-66.
[29] J. L. Peterson, "Petri nets," ACM Computing Surveys (CSUR), vol. 9, no. 3, 1977, pp. 223-252.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2023-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明