參考文獻 |
[1] I. M. Shafiqul, M. K. A. Jannat, J.-W. Kim, S.-W. Lee, and S.-H. Yang, “Hhi-attentionnet: An enhanced human-human interaction recognition method based on a lightweight deep learning model with attention network from csi,” Sensors, vol. 22, no. 16, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/16/6018
[2] L. Minh Dang, K. Min, H. Wang, M. Jalil Piran, C. Hee Lee, and H. Moon, “Sensor-based and vision-based human activity recognition: A comprehensive survey,” Pattern Recognition, vol. 108, p. 107561, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320320303642
[3] D. R. Beddiar, B. Nini, M. Sabokrou, and A. Hadid, “Vision-based human activity recognition: A survey,” Multimedia Tools Appl., vol. 79, no. 41–42, p. 30509–30555, nov 2020. [Online]. Available: https://doi.org/10.1007/s11042-020-09004-3
[4] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based activity recognition: A survey,” Pattern Recognition Letters, vol. 119, pp. 3–11, mar 2019. [Online]. Available: https://doi.org/10.1016%2Fj.patrec.2018.02.010
[5] S. M¨unzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, and R. D¨urichen, “Cnn-based sensor fusion techniques for multimodal human activity recognition,” in Proceedings of the 2017 ACM International Symposium on Wearable Computers, ser. ISWC ’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 158–165. [Online]. Available: https://doi.org/10.1145/3123021.3123046
[6] S. K. Yadav, K. Tiwari, H. M. Pandey, and S. A. Akbar, “A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions,” Knowledge-Based Systems, vol. 223, p. 106970, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705121002331
[7] R. Alazrai, A. Awad, B. Alsaify, M. Hababeh, and M. I. Daoud, “A dataset for wi-fi-based human-to-human interaction recognition,” Data in Brief, vol. 31, p. 105668, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S235234092030562X
[8] M. H. Uddin, J. M. K. Ara, M. H. Rahman, and S. H. Yang, “A study of real-time physical activity recognition from motion sensors via smartphone using deep neural network,” in 2021 5th International Conference on Electrical Information and Communication Technology (EICT), 2021, pp. 1–6.
[9] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state information: A survey,” ACM Comput. Surv., vol. 52, no. 3, jun 2019. [Online]. Available: https://doi.org/10.1145/3310194
[10] C.-Y. Lin, Y.-T. Liu, C.-Y. Lin, and T. K. Shih, “Tcn aa: A wi fi based temporal convolution network for human to human interaction recognition with augmentation and attention,” 2023.
[11] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” 2017.
[12] M. H. Kabir, M. H. Rahman, and W. Shin, “Csi-ianet: An inception attention network for human-human interaction recognition based on csi signal,” IEEE Access, vol. 9, pp. 166 624–166 638, 2021.
[13] Z. Chen, L. Zhang, C. Jiang, Z. Cao, and W. Cui, “Wifi csi based passive human activity recognition using attention based blstm,” IEEE Transactions on Mobile Computing, vol. 18, no. 11, pp. 2714–2724, 2019.
[14] S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee, “A survey on behavior recognition using wifi channel state information,” IEEE Communications Magazine, vol. 55, no. 10, pp. 98–104, 2017.
[15] B. Li, W. Cui, W. Wang, L. Zhang, Z. Chen, and M. Wu, “Two-stream convolution augmented transformer for human activity recognition,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 1, pp. 286–293, May 2021. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/16103
[16] M. Abdel-Basset, H. Hawash, N. Moustafa, and N. Mohammad, “H2hi-net: A dual-branch network for recognizing human-to-human interactions from channel-state information,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 10 010–10 021, 2022.
[17] Z. Zhou, F. Wang, J. Yu, J. Ren, Z. Wang, and W. Gong, “Target-oriented semi-supervised domain adaptation for wifi-based har,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, 2022, pp. 420–429.
[18] Y. Zhang, Y. Chen, Y. Wang, Q. Liu, and A. Cheng, “Csi-based human activity recognition with graph few-shot learning,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4139–4151, 2022.
[19] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “Signfi: Sign language recognition using wifi,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 2, no. 1, mar 2018. [Online]. Available: https://doi.org/10.1145/3191755
[20] D. Wang, J. Yang, W. Cui, L. Xie, and S. Sun, “Caution: A robust wifi-based human authentication system via few-shot open-set recognition,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 323–17 333, 2022.
[21] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11n traces with channel state information,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, p. 53, jan 2011. [Online]. Available: https://doi.org/10.1145/1925861.1925870
[22] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” 2018.
[23] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” 2016. |