參考文獻 |
1. Aggarwal, C. C., & Zhai, C. (2012). A survey of text classification algorithms. In Springer eBooks (pp. 163–222).
2. Almatarneh, S., & Gamallo, P. (2018). A lexicon based method to search for extreme opinions. PLOS ONE, 13(5), e0197816.
3. Anand, R., & Jeffrey David, U. (2011). Mining of massive datasets. Cambridge university press.
4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. In The Semantic Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007+ ASWC 2007, Busan, Korea, November 11-15, 2007. Proceedings (pp. 722-735). Springer Berlin Heidelberg.
5. Bai, J., Wang, Y., Chen, Y., Yang, Y., Bai, J., Yu, J., & Tong, Y. (2021). Syntax-BERT: Improving pre-trained transformers with syntax trees.
6. Baker, C. F., Fillmore, C. J., & Lowe, J. (1998). The Berkeley FrameNet Project.
7. Bandy, J., & Vincent, N. (2021). Addressing" documentation debt" in machine learning research: A retrospective datasheet for bookcorpus.
8. Berger, A. C., Della Pietra, V. J., & Della Pietra, S. A. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), 39–71.
9. Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge Based Systems, 226, 107134.
10. Blitzer, J., Dredze, M., & Pereira, F. (2007, June). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the association of computational linguistics (pp. 440-447).
11. Brown, E. W., & Coden, A. R. (2001, September). Capitalization recovery for text. In Workshop on Information Retrieval Techniques for Speech Applications (pp. 11-22). Berlin, Heidelberg: Springer Berlin Heidelberg.
12. Bejan, C. A., & Harabagiu, S. M. (2008, May). A linguistic resource for discovering event structures and resolving event coreference. In Language Resources and Evaluation Conference.
13. Chen, X., Jia, S., & Xiang, Y. (2020). A review: Knowledge reasoning over knowledge graph. Expert Systems With Applications, 141, 112948.
14. Chen, Y., Li, H., Li, H., Liu, W., Wu, Y., Huang, Q., & Wan, S. (2022). An overview of knowledge graph reasoning: key technologies and applications. Journal of Sensor and Actuator Networks, 11(4), 78.
15. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
16. Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020). Sentiment analysis based on deep learning: A comparative study. Electronics, 9(3), 483.
17. Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition.
18. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 4171-4186.
19. Ettinger, A. (2020). What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Transactions of the Association for Computational Linguistics, 8, 34-48.
20. Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. (2004). Reasoning about knowledge. MIT press.
21. Färber, M., Ell, B., Menne, C., & Rettinger, A. (2015). A comparative survey of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web Journal, 1(1), 1-5.
22. Fox, C. P. (1989). A stop list for general text. Sigir Forum, 24(1–2), 19–21.
23. Ghidini, C., & Serafini, L. (1999). A context-based logic for distributed knowledge representation and reasoning. In Modeling and Using Context: Second International and Interdisciplinary Conference, CONTEXT’99 Trento, Italy, September 9–11, 1999 Proceedings 2 (pp. 159-172). Springer Berlin Heidelberg.
24. Grefenstette, G. (1999). Tokenization. Syntactic Wordclass Tagging, 117-133.
25. Grosan, C., Abraham, A., Grosan, C., & Abraham, A. (2011). Rule-based expert systems. Intelligent systems: A modern approach, 149-185.
26. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. d., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., & Neumaier, S. (2021). Knowledge graphs. ACM Computing Surveys (CSUR), 54(4), 1-37.
27. Hwang, J. D., Bhagavatula, C., Le Bras, R., Da, J., Sakaguchi, K., Bosselut, A., & Choi, Y. (2021, May). (comet-) atomic 2020: On symbolic and neural commonsense knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 7, pp. 6384-6392).
28. Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text classification using machine learning techniques. WSEAS transactions on computers, 4(8), 966-974.
29. Ilievski, F., Szekely, P., & Zhang, B. (2021). Cskg: The commonsense knowledge graph. In The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings 18 (pp. 680-696). Springer International Publishing.
30. Jesus, J., Araújo, D., & Canuto, A. (2016, October). Fusion approaches of feature selection algorithms for classification problems. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS) (pp. 379-384). IEEE.
31. Ji, S., Pan, S., Cambria, E., Marttinen, P., & Philip, S. Y. (2021). A survey on knowledge graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and learning systems, 33(2), 494-514.
32. Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection methods with applications. In 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1200-1205). Ieee.
33. Jacovi, A., Shalom, O. S., & Goldberg, Y. (2018). Understanding convolutional neural networks for text classification. arXiv preprint arXiv:1809.08037.
34. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text classification algorithms: A survey. Information, 10(4), 150.
35. Kamps, J., & Marx, M. (2002). Visualizing wordnet structure. In Proc. of the 1st International Conference on Global WordNet (pp. 182-186).
36. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., & Shamma, D. A. (2017). Visual genome: Connecting language and vision using crowdsourced dense image annotations. International journal of computer vision, 123, 32-73.
37. Li, X., & Roth, D. (2002). Learning question classifiers. In COLING 2002: The 19th International Conference on Computational Linguistics.
38. Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: a tertiary study. Artificial Intelligence Review, 1-57.
39. Lin, Y., Liu, Z., Sun, M., Liu, Y., & Zhu, X. (2015, February). Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the AAAI conference on artificial intelligence (Vol. 29, No. 1).
40. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167.
41. Liu, H., & Singh, P. (2004). ConceptNet—a practical commonsense reasoning tool-kit. BT technology journal, 22(4), 211-226.
42. Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., & Wang, P. (2020, April). K-bert: Enabling language representation with knowledge graph. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 03, pp. 2901-2908).
43. Liu, P., Qiu, X., & Huang, X. (2016). Recurrent neural network for text classification with multi-task learning.
44. Lovera, F. A., Cardinale, Y. C., & Homsi, M. N. (2021). Sentiment analysis in twitter based on knowledge graph and deep learning classification. Electronics, 10(22), 2739.
45. Lilleberg, J., Zhu, Y., & Zhang, Y. (2015, July). Support vector machines and word2vec for text classification with semantic features. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 136-140). IEEE.
46. Liu, G., & Guo, J. (2019). Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing, 337, 325-338.
47. Liu, J., Lu, Z., & Du, W. (2019). Combining enterprise knowledge graph and news sentiment analysis for stock price prediction.
48. Leskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive data sets. Cambridge university press.
49. Ma, X., Xu, P., Wang, Z., Nallapati, R., & Xiang, B. (2019, November). Domain adaptation with BERT-based domain classification and data selection. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019) (pp. 76-83).
50. Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011, June). Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 142-150).
51. Manago, M., & Kodratoff, Y. (1987, August). Noise and Knowledge Acquisition. In IJCAI (pp. 348-354). Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093-1113.
52. Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39-41.
53. Marin, A., Holenstein, R., Sarikaya, R., & Ostendorf, M. (2014). Learning phrase patterns for text classification using a knowledge graph and unlabeled data. In Fifteenth annual conference of the international speech communication association.
54. Ostendorff, M., Bourgonje, P., Berger, M., Moreno-Schneider, J., Rehm, G., & Gipp, B. (2019). Enriching bert with knowledge graph embeddings for document classification.
55. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1, 81-106.
56. Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46).
57. Roget, P. M. (1911). Roget′s Thesaurus of English Words and Phrases. TY Crowell Company.
58. Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie, N., Rashkin, H., Roof, B., Smith, N. A., & Choi, Y. (2019). Atomic: An atlas of machine commonsense for if-then reasoning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 3027-3035).
59. Singh, J., & Gupta, V. (2016). Text stemming: Approaches, applications, and challenges. ACM Computing Surveys (CSUR), 49(3), 1-46.
60. Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune bert for text classification?. In Chinese Computational Linguistics: 18th China National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings 18 (pp. 194-206). Springer International Publishing.
61. Singhal, Amit (2012). Introducing the knowledge graph: Things, not strings. Google Official Blog.
62. Speer, R., Chin, J., & Havasi, C. (2017, February). Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
63. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2), 267-307.
64. Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of machine learning research, 2(Nov), 45-66.
65. Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information processing & management, 50(1), 104-112.
66. Vizcarra, J., Kozaki, K., Torres Ruiz, M., & Quintero, R. (2021). Knowledge-based sentiment analysis and visualization on social networks. New Generation Computing, 39, 199-229.
67. Vrandečić, D., & Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase. Communications of the ACM, 57(10), 78-85.
68. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.
69. Wadawadagi, R., & Pagi, V. (2020). Sentiment analysis with deep neural networks: comparative study and performance assessment. Artificial Intelligence Review, 53(8), 6155-6195.
70. Xian, Y., Lampert, C. H., Schiele, B., & Akata, Z. (2018). Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE transactions on pattern analysis and machine intelligence, 41(9), 2251-2265.
71. Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335-4385.
72. Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., & Liu, B. (2011). Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Laboratories, Technical Report HPL-2011, 89, 1-8.
73. Zhang, T., Fan, S., Hu, J., Guo, X., Li, Q., Zhang, Y., & Wulamu, A. (2021). A feature fusion method with guided training for classification tasks. Computational Intelligence and Neuroscience, 2021.
74. Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. Advances in neural information processing systems, 28.
75. Zhong, Y., Zhang, Z., Zhang, W., & Zhu, J. (2021). BERT-KG: a short text classification model based on knowledge graph and deep semantics. In Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part I 10 (pp. 721-733). Springer International Publishing. |