博碩士論文 110453018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:18.220.226.214
姓名 劉柏辰(Po-Chen Liu)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 基於圖神經網路之網路協定關聯分析
(Network Protocol Correlation Analysis Based on Graph Neural Network)
相關論文
★ 多重標籤文本分類之實證研究 : word embedding 與傳統技術之比較★ 學習模態間及模態內之共用表示式
★ Hierarchical Classification and Regression with Feature Selection★ 病徵應用於病患自撰日誌之情緒分析
★ 基於注意力機制的開放式對話系統★ 針對特定領域任務—基於常識的BERT模型之應用
★ 基於社群媒體使用者之硬體設備差異分析文本情緒強烈程度★ 機器學習與特徵工程用於虛擬貨幣異常交易監控之成效討論
★ 捷運轉轍器應用長短期記憶網路與機器學習實現最佳維保時間提醒★ 基於半監督式學習的網路流量分類
★ ERP日誌分析-以A公司為例★ 企業資訊安全防護:網路封包蒐集分析與網路行為之探索性研究
★ 資料探勘技術在顧客關係管理之應用─以C銀行數位存款為例★ 人臉圖片生成與增益之可用性與效率探討分析
★ 人工合成文本之資料增益於不平衡文字分類問題★ 探討使用多面向方法在文字不平衡資料集之分類問題影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 網際網路自1970年代發展至今,儼然已成為現代人生活中不可或缺的一部分,各式各樣不同的網路協定同時提供著不同的應用服務,例如:發布和接收HTML網頁服務由過往的HTTP(Hypertext Transfer Protocol)到因資安意識抬頭而延伸出的HTTPS(HTTP Scure)、提供電子郵件服務的SMTP、POP3及IMAP、提供檔案傳輸的FTP等,而具備網路傳輸路由決定性的路由傳輸協定,由於資安意識抬頭,近年開始受到關注。
本文探討基於機器學習的方式,計算網路路由協定所建構的「路由路徑(Route)」、或「路由圖(Graph)」間的「相似度(Similarity computation)」,並藉由與這些Graph相同路由來源的傳輸內容(例如:特定傳輸特徵、簽章指標),探詢路由協定與傳輸內容間的關聯,即完成「從相同路由來源找尋未知但值得關注的簽章指標」及「已知重要簽章指標存在其他路由的可能性」等兩個重要任務。實驗過程中我們另外利用「Graph Theory」將路由協定傳輸路徑與節點視覺化,使我們在取得相似度計算結果後得輔以視覺化的路由圖,快速瞭解行經節點及簽章指標間的關聯。
經由實驗,我們證明透過基於神經網路的SimGNN模型可以協助我們取得路由圖之間的相似度,包含Graph Edit Distance(GED)及相似度分析計算,進而達成上述兩個重要的實驗目的,對於未來資安防護及簽章指標查找溯源具有應用及研究前景。
摘要(英) Since its development in the 1970s, the Internet has become an indispensable part of modern life. Various network protocols provide different application services, such as HTTP (Hypertext Transfer Protocol)for publishing and receiving HTML web pages, HTTPS(HTTP Secure)for enhanced security, SMTP, POP3, and IMAP for email services, and FTP for file transfer. Routing protocols, such as Border Gateway Protocol(BGP) play a crucial role in determining network transmission routes. However, their security implications have gained attention in recent years.
This paper explores the application of machine learning techniques to compute the similarity between routes or graphs constructed by routing protocol. By analyzing the transmission content with the same route source, such as specific transmission features or indicators, we investigate the relationship between routing protocols and transmission content. This approach aims to identify unknown but noteworthy feature indicators based on similar route sources and explore the possibility of known important feature indicators existing in other routes. Additionally, we visualize the routing protocol′s transmission paths and nodes to quickly understand the associations between traversed nodes and feature indicators after obtaining similarity computation results.
Through experimentation, we demonstrate that the SimGNN(Similarity Graph Neural Network)model based on neural networks can assist in obtaining similarity between routing graphs, including Graph Edit Distance(GED)and similarity analysis calculations. This achievement fulfills the two important experimental objectives mentioned earlier and holds potential for future applications and research prospects in the fields of cybersecurity defense and feature indicator traceability.
關鍵字(中) ★ 圖編輯距離
★ 最大共同圖
★ 相似度計算
★ 圖神經網路
★ 圖卷積網路
關鍵字(英) ★ Graph Edit Distance
★ Maximum Common Sub-graph
★ Similarity computation
★ Graph Neural Networks
★ Graph Convolution Network
論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 vi
表目錄 vii
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究困難 4
1-4 論文架構 6
二、 文獻回顧 7
2-1 圖神經網路於路由相關應用 7
2-2 圖相似度計算相關研究 9
2-3 路由協定相關研究 10
三、 研究方法 13
3-1 研究架構 13
3-2 資料蒐集 14
3-3 資料前處理 15
3-4 實驗設計 22
3-5 成效評估 25
四、 實驗結果與評估 27
4-1 獨立資料集結果 27
4-2 混合資料集結果 28
4-3 無向圖實驗結果 30
4-4 關聯分析 31
五、 總結 41
5-1 結論 41
5-2 未來展望 42
參考文獻 43
參考文獻 [1] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Jan. 1997, doi: 10.1162/neco.1997.9.8.1735.
[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Jan. 1998, doi: 10.1109/5.726791.
[3] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–1054, Sep. 1998, doi: 10.1109/TNN.1998.712192.
[4] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning.” arXiv, Dec. 19, 2013. doi: 10.48550/arXiv.1312.5602.
[5] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, Apr. 1990, doi: 10.1016/0364-0213(90)90002-E.
[6] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “SimGNN: A Neural Network Approach to Fast Graph Similarity Computation.” arXiv, Mar. 01, 2020. doi: 10.48550/arXiv.1808.05689.
[7] M. V. Mahoney and P. K. Chan, “Learning Nonstationary Models of Normal Network Traffic for Detecting Novel Attacks”.
[8] L. Ruff et al., “Deep One-Class Classification,” presented at the Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 4393–4402.
[9] D. M. J. Tax and R. P. W. Duin, “Support Vector Data Description,” Machine Learning, vol. 54, no. 1, pp. 45–66, Jan. 2004, doi: 10.1023/B:MACH.0000008084.60811.49.
[10] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2260–2270, Oct. 2020, doi: 10.1109/JSAC.2020.3000405.
[11] P. Almasan, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-Aparicio, “Deep Reinforcement Learning meets Graph Neural Networks: exploring a routing optimization use case,” Computer Communications, vol. 196, pp. 184–194, Dec. 2022, doi: 10.1016/j.comcom.2022.09.029.
[12] O. Hope and E. Yoneki, “GDDR: GNN-based Data-Driven Routing,” in 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), Jul. 2021, pp. 517–527. doi: 10.1109/ICDCS51616.2021.00056.
[13] C. Zhang, S. Zhang, J. J. Q. Yu, and S. Yu, “FASTGNN: A Topological Information Protected Federated Learning Approach for Traffic Speed Forecasting,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8464–8474, Feb. 2021, doi: 10.1109/TII.2021.3055283.
[14] Z. Tarapata and R. Kasprzyk, “An Application of Multicriteria Weighted Graph Similarity Method to Social Networks Analyzing,” in 2009 International Conference on Advances in Social Network Analysis and Mining, Jul. 2009, pp. 366–368. doi: 10.1109/ASONAM.2009.33.
[15] S. Sridhar and S. Sanagavarapu, “Twitter Social Networking Graph using Hypernym based Semantic Similarity Detection,” in 2020 International Conference on Smart Electronics and Communication (ICOSEC), Sep. 2020, pp. 28–35. doi: 10.1109/ICOSEC49089.2020.9215279.
[16] Z. Tian, H. Fang, Z. Teng, and Y. Ye, “GOGCN: Graph Convolutional Network on Gene Ontology for Functional Similarity Analysis of Genes,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 2, pp. 1053–1064, Mar. 2023, doi: 10.1109/TCBB.2022.3181300.
[17] L. Jiang, J. Sun, Y. Wang, Q. Ning, N. Luo, and M. Yin, “Heterogeneous Graph Convolutional Network integrates Multi-modal Similarities for Drug-Target Interaction Prediction,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Feb. 2021, pp. 137–140. doi: 10.1109/BIBM52615.2021.9669468.
[18] W. Shalaby et al., “Help me find a job: A graph-based approach for job recommendation at scale,” in 2017 IEEE International Conference on Big Data (Big Data), Feb. 2017, pp. 1544–1553. doi: 10.1109/BigData.2017.8258088.
[19] G. Pan et al., “A Graph based Calligraphy Similarity Compare Model,” in 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Feb. 2021, pp. 395–400. doi: 10.1109/QRS-C55045.2021.00065.
[20] T. Hlavacek, A. Herzberg, H. Shulman, and M. Waidner, “Practical Experience: Methodologies for Measuring Route Origin Validation,” in 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Jun. 2018, pp. 634–641. doi: 10.1109/DSN.2018.00070.
[21] W. Deng, P. Zhu, X. Lu, and K. Cai, “A Systematic Compression Approach for Route Tables in a BGP Monitor,” in The Sixth IEEE International Conference on Computer and Information Technology (CIT’06), Sep. 2006, pp. 105–105. doi: 10.1109/CIT.2006.199.
[22] “什麼是網路功能虛擬化 (NFV)?| VMware 詞彙表 | TW.” https://www.vmware.com/tw/topics/glossary/content/network-functions-virtualization-nfv.html (accessed May 29, 2023).
[23] J. L. G. Gomez, R. Wang, M.-H. Chen, and C.-F. Chou, “ETMP-BGP: Effective tunnel-based multi-path BGP routing using software-defined networking,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2017, pp. 420–425. doi: 10.1109/SMC.2017.8122641.
[24] K.-T. Cheng, N. Xia, S.-W. Lee, and C.-S. Yang, “LRSD-BGP : A Software-Defined Routing Framework for Inter-Domain Fast Initial Link Setup,” in 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), May 2020, pp. 1–6. doi: 10.1109/BlackSeaCom48709.2020.9234955.
[25] “IP Routing: BGP Configuration Guide - Configuring a Basic BGP Network [Cisco ASR 1000 Series Aggregation Services Routers],” Cisco. https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/irg-xe-16-book/configuring-a-basic-bgp-network.html (accessed Jan. 09, 2023).
[26] “A GUIDE TO BORDER GATEWAY PROTOCOL (BGP) BEST PRACTICES.” National Security Agency, 2018. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/ctr-guide-to-border-gateway-protocol-best-practices.pdf
[27] “BGP 最佳路徑選取演算法 - Cisco.” https://www.cisco.com/c/zh_tw/support/docs/ip/border-gateway-protocol-bgp/13753-25.html#anc2 (accessed Jan. 10, 2023).
[28] M. Kioon, Z. Wang, and S. Das, “Security Analysis of MD5 Algorithm in Password Storage,” Applied Mechanics and Materials, vol. 347–350, Feb. 2013, doi: 10.2991/isccca.2013.177.
[29] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed relational graphs for pattern recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 3, pp. 353–362, May 1983, doi: 10.1109/TSMC.1983.6313167.
[30] R. J. Qureshi, J.-Y. Ramel, and H. Cardot, “Graph Based Shapes Representation and Recognition,” in Graph-Based Representations in Pattern Recognition, F. Escolano and M. Vento, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2007, pp. 49–60. doi: 10.1007/978-3-540-72903-7_5.
指導教授 柯士文(Shih-Wen Ke) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明