參考文獻 |
[1] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Jan. 1997, doi: 10.1162/neco.1997.9.8.1735.
[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Jan. 1998, doi: 10.1109/5.726791.
[3] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054–1054, Sep. 1998, doi: 10.1109/TNN.1998.712192.
[4] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning.” arXiv, Dec. 19, 2013. doi: 10.48550/arXiv.1312.5602.
[5] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, Apr. 1990, doi: 10.1016/0364-0213(90)90002-E.
[6] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “SimGNN: A Neural Network Approach to Fast Graph Similarity Computation.” arXiv, Mar. 01, 2020. doi: 10.48550/arXiv.1808.05689.
[7] M. V. Mahoney and P. K. Chan, “Learning Nonstationary Models of Normal Network Traffic for Detecting Novel Attacks”.
[8] L. Ruff et al., “Deep One-Class Classification,” presented at the Proceedings of the 35th International Conference on Machine Learning, 2018, pp. 4393–4402.
[9] D. M. J. Tax and R. P. W. Duin, “Support Vector Data Description,” Machine Learning, vol. 54, no. 1, pp. 45–66, Jan. 2004, doi: 10.1023/B:MACH.0000008084.60811.49.
[10] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2260–2270, Oct. 2020, doi: 10.1109/JSAC.2020.3000405.
[11] P. Almasan, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-Aparicio, “Deep Reinforcement Learning meets Graph Neural Networks: exploring a routing optimization use case,” Computer Communications, vol. 196, pp. 184–194, Dec. 2022, doi: 10.1016/j.comcom.2022.09.029.
[12] O. Hope and E. Yoneki, “GDDR: GNN-based Data-Driven Routing,” in 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), Jul. 2021, pp. 517–527. doi: 10.1109/ICDCS51616.2021.00056.
[13] C. Zhang, S. Zhang, J. J. Q. Yu, and S. Yu, “FASTGNN: A Topological Information Protected Federated Learning Approach for Traffic Speed Forecasting,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8464–8474, Feb. 2021, doi: 10.1109/TII.2021.3055283.
[14] Z. Tarapata and R. Kasprzyk, “An Application of Multicriteria Weighted Graph Similarity Method to Social Networks Analyzing,” in 2009 International Conference on Advances in Social Network Analysis and Mining, Jul. 2009, pp. 366–368. doi: 10.1109/ASONAM.2009.33.
[15] S. Sridhar and S. Sanagavarapu, “Twitter Social Networking Graph using Hypernym based Semantic Similarity Detection,” in 2020 International Conference on Smart Electronics and Communication (ICOSEC), Sep. 2020, pp. 28–35. doi: 10.1109/ICOSEC49089.2020.9215279.
[16] Z. Tian, H. Fang, Z. Teng, and Y. Ye, “GOGCN: Graph Convolutional Network on Gene Ontology for Functional Similarity Analysis of Genes,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 2, pp. 1053–1064, Mar. 2023, doi: 10.1109/TCBB.2022.3181300.
[17] L. Jiang, J. Sun, Y. Wang, Q. Ning, N. Luo, and M. Yin, “Heterogeneous Graph Convolutional Network integrates Multi-modal Similarities for Drug-Target Interaction Prediction,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Feb. 2021, pp. 137–140. doi: 10.1109/BIBM52615.2021.9669468.
[18] W. Shalaby et al., “Help me find a job: A graph-based approach for job recommendation at scale,” in 2017 IEEE International Conference on Big Data (Big Data), Feb. 2017, pp. 1544–1553. doi: 10.1109/BigData.2017.8258088.
[19] G. Pan et al., “A Graph based Calligraphy Similarity Compare Model,” in 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Feb. 2021, pp. 395–400. doi: 10.1109/QRS-C55045.2021.00065.
[20] T. Hlavacek, A. Herzberg, H. Shulman, and M. Waidner, “Practical Experience: Methodologies for Measuring Route Origin Validation,” in 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Jun. 2018, pp. 634–641. doi: 10.1109/DSN.2018.00070.
[21] W. Deng, P. Zhu, X. Lu, and K. Cai, “A Systematic Compression Approach for Route Tables in a BGP Monitor,” in The Sixth IEEE International Conference on Computer and Information Technology (CIT’06), Sep. 2006, pp. 105–105. doi: 10.1109/CIT.2006.199.
[22] “什麼是網路功能虛擬化 (NFV)?| VMware 詞彙表 | TW.” https://www.vmware.com/tw/topics/glossary/content/network-functions-virtualization-nfv.html (accessed May 29, 2023).
[23] J. L. G. Gomez, R. Wang, M.-H. Chen, and C.-F. Chou, “ETMP-BGP: Effective tunnel-based multi-path BGP routing using software-defined networking,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2017, pp. 420–425. doi: 10.1109/SMC.2017.8122641.
[24] K.-T. Cheng, N. Xia, S.-W. Lee, and C.-S. Yang, “LRSD-BGP : A Software-Defined Routing Framework for Inter-Domain Fast Initial Link Setup,” in 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), May 2020, pp. 1–6. doi: 10.1109/BlackSeaCom48709.2020.9234955.
[25] “IP Routing: BGP Configuration Guide - Configuring a Basic BGP Network [Cisco ASR 1000 Series Aggregation Services Routers],” Cisco. https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/irg-xe-16-book/configuring-a-basic-bgp-network.html (accessed Jan. 09, 2023).
[26] “A GUIDE TO BORDER GATEWAY PROTOCOL (BGP) BEST PRACTICES.” National Security Agency, 2018. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/professional-resources/ctr-guide-to-border-gateway-protocol-best-practices.pdf
[27] “BGP 最佳路徑選取演算法 - Cisco.” https://www.cisco.com/c/zh_tw/support/docs/ip/border-gateway-protocol-bgp/13753-25.html#anc2 (accessed Jan. 10, 2023).
[28] M. Kioon, Z. Wang, and S. Das, “Security Analysis of MD5 Algorithm in Password Storage,” Applied Mechanics and Materials, vol. 347–350, Feb. 2013, doi: 10.2991/isccca.2013.177.
[29] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed relational graphs for pattern recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 3, pp. 353–362, May 1983, doi: 10.1109/TSMC.1983.6313167.
[30] R. J. Qureshi, J.-Y. Ramel, and H. Cardot, “Graph Based Shapes Representation and Recognition,” in Graph-Based Representations in Pattern Recognition, F. Escolano and M. Vento, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2007, pp. 49–60. doi: 10.1007/978-3-540-72903-7_5. |