博碩士論文 108682601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.135.190.101
姓名 嚴精明(JORDI MAHARDIKA PUNTU)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 運用機器學習進行地球物理數據分析:地電阻與透地雷達方法中的應用
(Machine Learning-Driven Analysis of Geophysical Data: Application in Geoelectrical and Ground-Penetrating Radar Methods)
相關論文
★ 宜蘭三星清水地區現地應力與斷層再活動分析★ 地面-井下地電阻影像法之空間解析度與成像能力分析
★ 運用地電阻影像法估算非受壓含水層之水頭及比出水率: 位於台灣中部,台中-南投地盆地沿烏溪河之研究案例★ 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率
★ 運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率★ 辨識大地地磁法現地施測之噪訊:以台灣花蓮地區為案例
★ 運用大地電磁法探討北部屏東平原地下構造★ 應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率
★ 地電阻剖面影像法之不確定性評估★ 時間域電磁波方法在雲林地區濁水溪沖積扇中下游水文地質結構測勘之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-3-10以後開放)
摘要(中) 地電阻和透地雷達(GPR)方法運用已超過一世紀。事實上,最早的地電阻法研究約在1920年代,重點探討一維(1D)模型中不同深度的電導率。另一方面,GPR最初是在1930年代作為評估冰川厚度的工具。近年來,這些方法已經顯著發展,有更強大且高效的設備和數據收集儀器的出現。隨著有更多技術成熟的儀器,更需要關注如何有效地管理、分析和解釋這些方法收集的數據。與數據分析相關的問題雖已存在很久,卻常常被研究人員忽視。首先,大多數反演軟件的價格高昂,使許多研究人員無法負擔進行研究。其次,在分析和解釋地電測量獲得的主要和次要數據時,仍然存在挑戰,特別是在處理時間序列數據、進行正演建模和將獲得的數據轉化為其他訊息或參數(如岩性或其他物理參數)時。第三,該領域缺乏有效整合多種方法的電阻數據的成熟技術,許多研究人員仍然依賴於過時的方法,如將來自各種測量技術的結果並排比較,或疊加彼此的圖像以找到它們之間的聯繫。第四,三維(3D)建模的精度存在問題,雖然研究人員通常使用商業軟件處理3D模型,但這些工具可能會引入過度擬合和數據的過度插值等問題。此外,這些軟件有時難以充分處理模型的邊界條件,導致缺乏彈性,甚至過度解示。第五,數據處理及解釋耗時且需要大量人力進行,特別是在處理大量數據集並嘗試同時識別多個不同特徵時,例如在雷達圖中判視鋼筋位置。為此需要研究更先進的方法來有效解決這個問題。最後,數據分析的定量方法存在顯著不足。許多以前的研究主要依賴於對來自二維(2D)數據的結果的視覺解釋,如標示結構、異常或目標,而沒有採用定量方法。這是一個重大疏漏,因為作為地球物理學家,擁有數值及其相應的物理意義在進行研究時至關重要。
本研究旨在透過機器學習(ML)並結合Python的模組和視覺化,引入精密的處理步驟和數據分析,解決判識上的挑戰。首先,我們提出了一種以Python為基礎的方法利用機器學習來克服高成本的反演軟體,本研究使用監督式機器學習(SML)技術,如隨機森林、支持向量機和線性回歸,將結果與傳統的最小二乘法進行比較,隨機森林算法在正演模擬的數據和現地數據的均方根誤差較低,R2值較高,顯示隨機森林算法有較好的運算潛力。其次,為了加強對於電阻率數據的解釋,本研究應用了非監督式機器學習(UML)方法,其中包括聚合式階層分群法(HAC)和K平均演算法,用於主要和次要的電阻率資料。在主數據集中,解釋用現地和正演數據,經反演出的電阻率剖面,而在次要數據集中,我們將電阻率數據轉化為地下水參數,揭示了測量區域內獨特的模式。這種方法使我們對地下水隨季節變化模式有了新的理解。本研究成功地利用統計方法中的數據同化來整合多種地電數據,超越了傳統的直接比較方法,因為該方法會忽略每次測量的電阻率範圍。此外,本研究透過Python的模組和視覺化,逐步開發了一個避免了過度擬合和過度插值的3D電阻率模型。這與商業軟件形成了對比,商業軟體模型的邊界和地形是預設的。我們更進一步利用SML,將3D電阻率模型轉換為3D似地質模型,其中的鑽井資料作為模型的真實數據。其次,應用於電阻率成像(ERI)的ML程序被擴展到透地雷達(GPR)數據分析。實現了自動化解釋雷達圖,包括檢測襯砌、空洞和鋼筋。本研究也建立了GPR的3D模型,解決相位差異,改善視覺化的結果。更進一步,我們以定量方式加強了ERI和GPR的數據分析。對於ERI,應用了非監督式機器學習來描繪2D模型的結構邊界,並透過2D正演模擬驗證了該方法。對於GPR方面,該方法成功應用在對於地下水的定量研究,利用各種統計模型估算土壤含水量和地下水位。
總體而言,本研究針對多年對於地電阻法和透地雷達法應用中所遇到的挑戰提供了許多有效的解決方案。對於現地數據進行進階分析也已用正演模擬得到驗證,為解決地電阻法和透地雷達法研究中過去的問題提供了見解,期待此研究成果能有助於引領未來的研究工作。
摘要(英) Geoelectrical and Ground Penetrating Radar (GPR) methods have been in use for over a century. In fact, the first attempt at geoelectrical research took place in the 1920s, focusing on electrical conductivity at different depths in a one-dimensional (1D) model. On the other hand, GPR was initially introduced as a tool for evaluating glacier thickness in the 1930s. Over the years, these methods have evolved significantly, resulting in more powerful and efficient equipment and data acquisition instruments. With well-developed instruments now available, the primary challenge that demands more attention is how to effectively manage, analyze, and interpret the acquired data from these methods. Several issues related to data analysis have persisted for an extended period, often overlooked by researchers.
Firstly, the majority of inversion software comes at a steep cost, rendering it unaffordable for many researchers to conduct their studies. Secondly, challenges persist in analyzing and interpreting primary and secondary data derived from geoelectrical measurements, particularly when dealing with time series data, conducting forward modeling, and transforming acquired data into meaningful information, such as lithology or other physical parameters. Thirdly, the field lacks a well-developed technique for effectively integrating multi-geoelectrical data. Many researchers still rely on outdated methods, such as comparing results from various measurement techniques side by side or overlaying each other′s images to find links between them. Fourthly, there are issues concerning the accuracy of three-dimensional (3D) modeling. While researchers often turn to commercial software for handling 3D models, these tools can introduce problems like overfitting and excessive interpolation of the data. Furthermore, such software sometimes struggles to adequately address the model′s boundary conditions, resulting in inflexibility and misinterpretation. Fifthly, there is a significant demand for time and labor-intensive data processing and interpretation, especially when dealing with numerous datasets and attempting to identify multiple distinct features simultaneously, such as locating reinforcement bars or rebar in radargrams. Advanced methods need to be explored to effectively address this issue. Finally, there is a significant deficiency in quantitative methods for data analysis. Many previous studies primarily rely on visual interpretations of results obtained from two-dimensional (2D) data, such as delineating structures, anomalies, or targets, without incorporating quantitative approaches. This oversight is significant since, as geophysicists, having numerical values along with their corresponding physical meanings is of utmost importance in conducting research.
To address the identified challenges, this study aims to introduce sophisticated processing steps and data analysis through the integration of Machine Learning (ML) with Python-based modeling and visualization.
Firstly, a Python-based approach coupled with machine learning is proposed to tackle the high-cost inversion software. Supervised Machine Learning (SML) techniques, such as Random Forest, Support Vector Machine, and Linear Regression, are employed. The results are compared with the conventional Least Square Method, revealing that the Random Forest algorithm exhibits promise with lower RMSE and higher R2 for both forward modeling simulation data and field data. Secondly, to enhance the interpretation of resistivity data, Unsupervised Machine Learning (UML) methods, including Hierarchical Agglomerative Clustering (HAC) and K-means algorithms, are applied to both primary and secondary resistivity data. In the primary dataset, the inverted resistivity section for both field and forward modeling data is interpreted, while in the secondary dataset, resistivity data transformed into groundwater parameters reveal unique patterns in the survey area. This approach leads to a novel understanding of groundwater behavior within seasonal fluctuations. Thirdly, the study successfully integrates multi-geoelectrical data using data assimilation in statistical methods, moving beyond the traditional direct comparison approach that neglects the resistivity range of each measurement. Fourthly, by employing Python-based modeling and visualization with a detailed step-by-step procedure, a 3D resistivity model is developed without overfitting or excessive interpolation. This is in contrast to commercial software, where the boundary and topography of the model are predefined. Moreover, utilizing SML, the 3D resistivity model is converted into a 3D apparent geological model, where borehole data act as ground truth data. Fifthly, the ML procedures developed for Electrical Resistivity Imaging (ERI) are extended to Ground Penetrating Radar (GPR) data analysis. Automation of radargram interpretation, including the detection of lining, voids, and rebar, is achieved. A 3D model for GPR data is constructed, addressing phase differences for improved visualization. Finally, data analysis is enhanced quantitatively for both ERI and GPR data. For ERI data, Unsupervised Machine Learning is applied to delineate structure boundaries in 2D data, confirming the success of this method through 2D forward modeling simulation. For GPR data, this method is successfully implemented for quantitative groundwater studies, estimating soil water content and groundwater table using various statistical models.
In summary, this dissertation provides valuable solutions to the challenges encountered in employing geoelectrical and GPR methods for over the years. The advanced procedures applied to field data are validated through forward modeling simulation, offering insights that could address past issues in geoelectrical and GPR studies. Ultimately, these findings contribute to navigating future research endeavors in the field.
關鍵字(中) ★ 地電法
★ 電阻影像法
★ 透地雷達
★ 機器學習
★ 三維模型
★ 正演算法
★ 模擬
★ 地球物理
★ Python
★ 資料融合
關鍵字(英) ★ Geoelectrical Method
★ Electrical Resistivity Imaging
★ Ground Penetrating Radar
★ Machine Learning
★ 3D Modeling
★ Forward Modeling
★ Simulation
★ Geophysics
★ Python
★ Data Fusion
論文目次 摘要 v
ABSTRACT viii
ACKNOWLEDGMENTS xi
TABLE OF CONTENTS xii
ABBREVATION xx
LIST OF FIGURES xxiv
LIST OF TABLES xxxvi
CHAPTER I EXORDIUM 1
1.1 Background and Motivation 1
1.2 Research Objectives 4
1.3 Structure of the Dissertation 5
CHAPTER II FOUNDATIONAL CONCEPTS 8
2.1. Overview of Electrical Resistivity Imaging Method 8
2.1.1. Basic Principle 8
2.1.2. One-dimensional Resistivity Survey 12
2.1.3. Two-dimensional Resistivity Survey 13
2.1.4. Three-dimensional Resistivity Survey 14
2.2. Overview of Ground Penetrating Radar Method 15
2.2.1. Basic Principle 15
2.2.2. A-Scan mode 16
2.2.3. B-Scan mode 16
2.2.4. C-Scan mode 17
2.3. Related Literature Review of Machine Learning Application in ERI and GPR 17
CHAPTER III ADVANCED GEOELECTRICAL DATA ANALYSIS 22
3.1. Overview 22
3.2. Two-Dimensional ERI Inversion with Machine Learning Approaches 22
3.2.1. Introduction 22
3.2.2. Methodology 24
3.2.3. Results and Discussions 27
3.2.3.1. Synthetic Model 27
3.2.3.2. Field Data 32
3.2.4. Summary 35
3.2.5. Annotation 35
3.3. A Machine Learning Approach to Improve Interpretation Of the 2D ERI 36
3.3.1. Introduction 36
3.3.2. Methodology 36
3.3.2.1. Input Data 36
3.3.2.2. UML Interpretation 40
3.3.3. Results and Discussion 41
3.3.3.1. Synthetic Model 41
3.3.3.2. Field Data 48
3.3.4. Summary 54
3.3.5. Annotation 55
3.4. Time-lapse ERI and Time Series Clustering Analysis 56
3.4.1. Introduction 56
3.4.2. Material and Methods 57
3.4.2.1. The Study Area 57
3.4.2.2. The ERI Design and Survey 59
3.4.2.3. The Estimation of Groundwater Level and Specific Yield 61
3.4.2.4. Time Series Clustering Analysis 64
3.4.2.4.1. Principal Component Analysis 64
3.4.2.4.2. Hierarchical Agglomerative Clustering 65
3.4.2.4.3. Time Series Clustering Evaluation 67
3.4.3. Results 68
3.4.3.1. The Time-lapse ERI Surveys 68
3.4.3.2. The Inverted Van Genuchten Model 72
3.4.3.3. The Estimation of Groundwater Levels 73
3.4.3.4. The Estimation of Specific Yields 73
3.4.3.5. The Time Series Clustering Results 79
3.4.3.5.1. The VG Model Parameters 79
3.4.3.5.2. The Variation of Groundwater Level Changes 79
3.4.4. Discussion 83
3.4.5. Summary 89
3.4.6. Annotation 90
3.5. A 3D Modeling Approach Utilizing Machine Learning for Multi-Geoelectrical Data Fusion 91
3.5.1. Introduction 91
3.5.2. Material and Methods 94
3.5.2.1. Background of the Study Area 94
3.5.2.2. The Geoelectrical Data 95
3.5.2.2.1. Normal Borehole Resistivity (NBR) 97
3.5.2.2.2. Vertical Electrical Sounding (VES) 101
3.5.2.2.3. Transient Electromagnetic (TEM) 104
3.5.2.3. The Resistivity Data Assimilation 104
3.5.2.4. The Establishment of a 3D Resistivity Model 106
3.5.2.5. The Establishment of a 3D Apparent Resistivity Model 109
3.5.3. Results and Discussion 111
3.5.3.1. The 3D Resistivity Model 111
3.5.3.2. The 3D Apparent Resistivity Model 114
3.5.4. Summary 125
3.5.5. Annotation 126
CHAPTER IV ADVANCED GROUND PENETRATING RADAR DATA ANALYSIS 128
4.1 Overview 128
4.2 Analysis of Ground Penetrating Radar Data Using Machine Learning for Tunnel Inspection 128
4.2.1. Introduction 128
4.2.2. Material and Methods 131
4.2.2.1. The Site Description and the GPR Measurements 131
4.2.2.2. GPR Data Processing 136
4.2.2.3. The Tunnel Lining Detection Method 137
4.2.2.3.1. Lining Detection in A-Scan 139
4.2.2.3.2. Lining Detection in B-Scan 140
4.2.2.4. Semi-automatic Rebar Identification 143
4.2.2.4.1. Hilbert Transform 144
4.2.2.4.2. Application of Hierarchical Agglomerative Clustering (HAC) 145
4.2.2.5. Two-dimensional Forward Modeling (TDFM) 146
4.2.3. Results 149
4.2.3.1. Lining of the Tunnel 149
4.2.3.2. Rebar Inside the Second Lining 150
4.2.3.3. The Result of TDFM 150
4.2.3.4. The Result of HAC 155
4.2.4. Discussion 158
4.2.5. Summary 167
4.2.6. Annotation 168
4.3 Void Detection with Ground Penetrating Radar and Machine Learning 169
4.3.1. Introduction 169
4.3.2. Methodology 170
4.3.2.1. Two-dimensional Forward Modeling 170
4.3.2.2. Spectral Clustering 171
4.3.3. Results and Discussion 174
4.3.3.1. TDFM Results 174
4.3.3.2. Spectral Clustering Results 177
4.3.4. Summary 181
4.3.5. Annotation 182
4.4 A quantitative Approach of Ground Penetrating Radar for Hydrogeological Study 183
4.4.1. Introduction 183
4.4.2. Methodology 184
4.4.2.1. The Study Area and Survey Design 184
4.4.2.2. The Process of Estimating Soil Water Content Using GPR 185
4.4.2.3. Forward Modeling 187
4.4.3. Results and Discussion 188
4.4.3.1. Forward Modeling 188
4.4.3.2. GPR in Coastal Area 194
4.4.3.3. GPR in River Area 199
4.4.4. Summary 203
4.4.5. Annotation 205
4.5 Three-Dimensional Model Analysis for Ground Penetrating Radar 206
4.5.1. Introduction 206
4.5.2. Methodology 207
4.5.2.1. Forward Modeling 207
4.5.2.2. Field Data 210
4.5.3. Results and Discussion 211
4.5.3.1. Forward Modeling Result 211
4.5.3.2. Field Data Result 212
4.5.4. Summary 217
4.5.5. Annotation 217
CHAPTER V CONCLUDING REMARKS 218
5.1. Conclusions 218
5.2. Prospecting Insights and Future Directions 222
5.2.1. 3D shallow resistivity model of Taiwan 222
5.2.2. Application of machine learning for Magnetotelluric data 224
5.2.3. Denoising method with machine learning 225
5.2.4. Magnetotelluric data interpretation with machine learning 230
5.2.5. GPR data reconstruction techniques with machine learning for retrieving missing traces and addressing low sampling rates 232
5.2.6. A Comprehensive Examination of Uncertainties in the Application of Machine Learning to Geoelectrical and GPR Techniques 234
BIBLIOGRAPHY 235
APPENDIX 1 257
A.1.1. The Visualization of Principal Component Analysis (PCA) to the Groundwater Level Changes. 257
A.1.2. A.2 The 3D resistivity and apparent geological model pertaining to the northern segment of the Choushui River Alluvial Fan (Changhua region) 258
A.1.3. A.3 The 3D Resistivity of the Yilan region 258
APPENDIX 2 259
A.2.1. The clustered radargram 260
A.2.2. The heat map and dendrogram 261
參考文獻 Abu Rajab, J., et al. (2023). Multiscale geoelectrical characteristics of seawater intrusion along the eastern coast of the Gulf of Aqaba, Jordan. Journal of Applied Geophysics, 208. doi:10.1016/j.jappgeo.2022.104868
Advanced Geosciences. (2006). Instruction Manual for EarthImager 2D. Austin, TX, USA: Advanced Geosciences Inc.
Ah-Pine, J. (2018). An Efficient and Effective Generic Agglomerative Hierarchical Clustering Approach. Journal of machine learning research, 19(1-43).
Ahmed, S. B., et al. (2020). Mapping the possible buried archaeological targets using magnetic and ground penetrating radar data, Fayoum, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 23(3), 321-332.
Ahrens, J., et al. (2005). 36-paraview: An end-user tool for large-data visualization. The visualization handbook, 717, 50038-50031.
Akinsunmade, A., et al. (2019). Finite-difference time domain (FDTD) modeling of ground penetrating radar pulse energy for locating burial sites. Acta Geophysica, 67(6), 1945-1953. doi:10.1007/s11600-019-00352-9
Al-Qadi, I. L., & Lahouar, S. (2005). Measuring layer thicknesses with GPR – Theory to practice. Construction and Building Materials, 19(10), 763-772. doi:10.1016/j.conbuildmat.2005.06.005
Alani, A. M., & Tosti, F. (2018). GPR applications in structural detailing of a major tunnel using different frequency antenna systems. Construction and Building Materials, 158, 1111-1122. doi:10.1016/j.conbuildmat.2017.09.100
Aldiss, D., et al. (2012). Benefits of a 3D geological model for major tunnelling works: an example from Farringdon, east–central London, UK.
Aleardi, M., et al. (2021). A convolutional neural network approach to electrical resistivity tomography. Journal of Applied Geophysics, 193, 104434.
Aleardi, M., et al. (2021). Ensemble-based electrical resistivity tomography with data and model space compression. Pure and Applied Geophysics, 178, 1781-1803.
Aleardi, M., et al. (2022). Probabilistic inversions of electrical resistivity tomography data with a machine learning‐based forward operator. Geophysical Prospecting, 70(5), 938-957.
Amania, H. H. (2021). Imaging the Subsurface Structures with the Magnetotelluric Method in the northern Pingtung Plain of Taiwan. (Master Thesis). National Central University, Zhongli, Taoyuan.
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54-62. doi:10.2118/942054-G
Arowoogun, K. I., & Osinowo, O. O. (2021). 3D resistivity model of 1D vertical electrical sounding (VES) data for groundwater potential and aquifer protective capacity assessment: a case study. Modeling Earth Systems and Environment, 8(2), 2615-2626. doi:10.1007/s40808-021-01254-w
Azmi, M., et al. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. IOP Conf. Series: Materials Science and Engineering, 527(2019). doi:10.1088/1757-899X/527/1/012016
Bania, G., & Ćwiklik, M. (2013). 2D Electrical Resistivity Tomography interpretation ambiguity-example of field studies supported with analogue and numerical modelling. Geology, Geophysics and Environment, 39(4), 331-339.
Batrakov, D., et al. (2010). Hilbert transform application to the impulse signal processing. Paper presented at the 2010 5th International Confernce on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine.
Benedetto, A., et al. (2017). An overview of ground-penetrating radar signal processing techniques for road inspections. Signal processing, 132, 201-209. doi:10.1016/j.sigpro.2016.05.016
Bickel, J. O., et al. (1996). Tunnel engineering handbook (2 ed.): Springer Science & Business Media.
Binley, A., et al. (1996). Examination of solute transport in an undisturbed soil column using electrical resistance tomography. Water resources research, 32(4), 763-769.
Bobachev, A. (2000). X2IPI - TOOLBOX FOR ELECTRICAL RESISTIVITY TOMOGRAPHY. Moscow.
Bobachev, C. (2002). IPI2Win: A windows software for an automatic interpretation of resistivity sounding data. Moscow State University, 320.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Brooks, R. H. (1965). Hydraulic properties of porous media: Colorado State University.
Burger, H. R., et al. (2023). Introduction to applied geophysics: Exploring the shallow subsurface: Cambridge University Press.
Cao, X., & Yan, L. (2018). Power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal. Geosystem Engineering, 21(5), 251-261.
Cardarelli, E., & De Donno, G. (2017). Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (Central Italy). Journal of Applied Geophysics, 141, 77-87. doi:10.1016/j.jappgeo.2017.04.012
Carr, J. C., et al. (2001). Reconstruction and representation of 3D objects with radial basis functions. Paper presented at the Proceedings of the 28th annual conference on Computer graphics and interactive techniques.
Cassidy, N. J., et al. (2011). Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques. Journal of Applied Geophysics, 74(4), 263-276.
Central Geological Survey. (1995). Groundwater Observation Well Network Phase I: The Application of Geophysical Exploration and Stratum Study; Technical Report. Central Geological Survey, MOEA: Taipei City, Taiwan.
Central Geological Survey. (1999). The Investigation of Hydrogeology in the Choshui River Alluvial Fan, Taiwan. Central Geological Survey, MOEA: Taipei City, Taiwan.
Central Geological Survey. (2023). Hydrogeological Database Combined Query Platform. Retrieved June 13, 2020, from Central Geology Survey of Taiwan https://hydrogis.moeacgs.gov.tw/map/zh-tw#
Chabaane, A., et al. (2017). Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). Journal of African Earth Sciences, 134, 292-298. doi:10.1016/j.jafrearsci.2017.07.003
Chandra, S., & Agarwal, M. M. (2013). Railway Tunnelling. In Railway Engineering (Second ed., pp. 543-561). Oxford: Oxford University Press.
Chang, P.-Y., et al. (2015). Examining lake-bottom structures with the resistivity imaging method in Ilan′s Da-Hu Lake in Northeastern Taiwan. Journal of Applied Geophysics, 119, 170-177.
Chang, P.-Y., et al. (2023). Electrical resistivity imaging data for hydrogeological and geological hazard investigations in Taiwan. Data in Brief, 49, 109377.
Chang, P.-Y., et al. (2018). Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan. Journal of Applied Geophysics, 153, 127-135.
Chang, P.-Y., et al. (2014). Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics, 50, 91-100.
Chang, P.-Y., et al. (2021). Antenna Holder Device for Ground Penetrating Radar. Taiwan Patent No. H01Q-001/00(2006.01): I. P. O. M. R.O.C.
Chang, P.-Y., et al. (2022). Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs. Water, 14(3). doi:10.3390/w14030420
Chapra, S. C. (2012). Applied numerical methods with MATLAB® for engineers and scientists (Third ed.). New York: McGraw-Hill Education.
Chen, C. H. (Cartographer). (2000). Geological Map of Taiwan. Retrieved from https://gis3.moeacgs.gov.tw/
Chen, H., et al. (2021). Improved naive Bayes classification algorithm for traffic risk management. EURASIP Journal on Advances in Signal Processing, 2021(1), 1-12.
Chen, Y.-A., et al. (2021). Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing, 13(12). doi:10.3390/rs13122281
Chin, K.-B., et al. (2010). A simplified method to estimate the soil-water characteristic curve. Canadian Geotechnical Journal, 47(12), 1382-1400. doi:10.1139/t10-033
Chu, H.-J., et al. (2021). Development of spatially varying groundwater-drawdown functions for land subsidence estimation. Journal of Hydrology: Regional Studies, 35. doi:10.1016/j.ejrh.2021.100808
Cockett, R., et al. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85, 142-154.
Cui, X., et al. (2021). GPR-Based Automatic Identification of Root Zones of Influence Using HDBSCAN. Remote Sensing, 13(6). doi:10.3390/rs13061227
Curtis, J. O. (2001). Moisture effects on the dielectric properties of soils. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 125-128.
Dahlin, T. (1996). 2D resistivity surveying for environmental and engineering applications. First break, 14(7).
Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52(5), 379-398. doi:10.1111/j.1365-2478.2004.00423.x
Dai, Q., et al. (2023). 3DInvNet: A Deep Learning-Based 3D Ground-Penetrating Radar Data Inversion. IEEE Transactions on Geoscience and Remote Sensing.
Damle, A., et al. (2019). Simple, direct and efficient multi-way spectral clustering. Information and Inference: A Journal of the IMA, 8(1), 181-203.
Daniels, D. J. (2004). Ground Penetrating Radar-2nd edition (2nd ed.). London, UK: The Institution of Electrical Engineer.
De Castro, D. L., et al. (2014). Ground-Penetrating Radar imaging techniques applied in 3D environment: Example in inactive dunes. Brazilian Journal of Geophysics, 32(2), 273-289.
De La Peña, F., et al. (2022). hyperspy/hyperspy: Release v1. 7.3. Zenodo.
De Schutter, G. (2013). Damage to concrete structures: Taylor & Francis.
De Souza, T. (2013). Concrete Scanning with GPR Guidebook; Sensors & Software Inc.
Delforge, D., et al. (2021). Time-series clustering approaches for subsurface zonation and hydrofacies detection using a real time-lapse electrical resistivity dataset. Journal of Applied Geophysics, 184. doi:10.1016/j.jappgeo.2020.104203
Demsa, J., et al. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research 14, 2349-2353.
Deuss, K. E., et al. (2023). Identification, mapping, and characterisation of a mature artificial mole channel network using ground-penetrating radar. Agricultural Water Management, 288, 108477.
Dibaj, M., et al. (2020). Modelling seawater intrusion in the Pingtung coastal aquifer in Taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeology Journal, 28(6), 2085-2103. doi:10.1007/s10040-020-02172-4
Dietrich, S., et al. (2018). Estimation of Specific Yield and its Variability by Electrical Resistivity Tomography. Water resources research, 54(11), 8653-8673. doi:10.1029/2018wr022938
Dinh, K., et al. (2018). An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Automation in Construction, 89, 292-298. doi:10.1016/j.autcon.2018.02.017
Dinh, K., et al. (2015). Clustering-Based Threshold Model for Condition Assessment of Concrete Bridge Decks with Ground-Penetrating Radar. Transportation Research Record: Journal of the Transportation Research Board, 2522(1), 81-89. doi:10.3141/2522-08
Dong, L.-D., et al. (1996). Taiwan Groundwater Observation Network Phase I Project: Geophysical Exploration and Stratigraphy Correlation of the Zhoushui River Alluvial Fan. Retrieved from Central Geological Survey of Taiwan: Zonghe New Taipei City.

Dou, Q., et al. (2017). Real-Time Hyperbola Recognition and Fitting in GPR Data. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 51-62. doi:10.1109/tgrs.2016.2592679
Dudek, A. (2020). Silhouette Index as Clustering Evaluation Tool. In Classification and Data Analysis (pp. 19-33).
Dumont, M., et al. (2018). Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological studies. Journal of Applied Geophysics, 157, 1-9. doi:10.1016/j.jappgeo.2018.06.020
Everitt, B. S., et al. (2011). Cluster Analysis (5th Edition ed.). UK: John Wiley & Sons, Inc.
Fredlund, D. G., et al. (2011). Estimation of soil suction from the soil-water characteristic curve. Canadian Geotechnical Journal, 48(2), 186-198. doi:10.1139/t10-060
Genelle, F., et al. (2012). Monitoring landfill cover by electrical resistivity tomography on an experimental site. Engineering Geology, 145-146, 18-29. doi:10.1016/j.enggeo.2012.06.002
Genuchten, V. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:10.2136/sssaj1980.03615995004400050002x
Glover, P. W. J. (2015). Geophysical Properties of the Near Surface Earth: Electrical Properties. In Treatise on Geophysics (pp. 89-137).
Gopinathan, P., et al. (2020). A geo-spatial approach to perceive the groundwater regime of hard rock terrain-a case study from Morappur area, Dharmapuri district, South India. Groundwater for sustainable development, 10, 100316.
Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Paper presented at the European conference on information retrieval.
Günther, T., & Rücker, C. (2012). Electrical Resistivity Tomography (ERT) in geophysical applications-state of the art and future challenges. Paper presented at the Schlumberger Symposium--100 years of electrical imaging, Paris.
Guo, Q., et al. (2023). A deep learning inversion method for three-dimensional electrical resistivity tomography based on neighbourhood feature extraction. IEEE Sensors Journal.
Gupta, A. (2023). Spectral Clustering in Machine Learning. Retrieved from https://www.geeksforgeeks.org/ml-spectral-clustering/
Gupta, S. M., et al. (2023). Inversion of Two-dimensional Electrical Resistivity data using Convolutional Neural Networks (U-Net. Authorea Preprints.
Habasimbi, P., & Nishimura, T. (2018). Comparison of Soil–Water Characteristic Curves in One-Dimensional and Isotropic Stress Conditions. Soil Systems, 2(3). doi:10.3390/soilsystems2030043
Ho, C. S. (1988). An Introduction to the Geology of Taiwan, Explanatory Text of the Geologic Map of Taiwan. Cent. Geol. Surv., Ministry Econ. Affairs, 2nd Edition, 192.
Ho, H.-C., & Chen, M.-M. (2000). Explanatory Text of the Geological Map of Taiwan Scale 1:50.000 Sheet 24. New Taipei City: Central Geological Survey of Taiwan.
Honings, J. P., et al. (2022). Ground-penetrating radar detection of hydrologic connectivity in a covered karstic setting. Hydrology, 9(10), 168.
Hsu, C.-H., et al. (2016). Using Remote Sensing Techniques to Identify the Landslide Hazard Prone Sections along the South Link Railway in Taiwan. Procedia Engineering, 143, 708-716. doi:10.1016/j.proeng.2016.06.107
Huang, C.-C., et al. (2014). Analysis and Application of the Pumping test of the Mountain Area- A Case Study in the Middle Section of Western Taiwan. [山區岩層抽水試驗分析及應用-以台灣西部中段山區為例]. Sinotech Engineering(122), 45-52.
Huang, Z., et al. (2022). Research on void signal recognition algorithm of 3D ground-penetrating radar based on the digital image. Frontiers in Materials, 9, 850694.
Hung, W.-C., et al. (2009). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548. doi:10.1007/s12665-009-0139-9
Hung, W.-C., et al. (2017). Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sensing, 10(2). doi:10.3390/rs10010040
Ibraheem, I. M., et al. (2021). Integrated interpretation of magnetic and ERT data to characterize a landfill in the north-west of Cologne, Germany. Pure and Applied Geophysics, 178(6), 2127-2148.
Inman, J. R. (1975). Resistivity inversion with ridge regression. Geophysics, 40(5), 798-817.
Inman Jr, J. R., et al. (1973). Resistivity inversion. Geophysics, 38(6), 1088-1108.
Ismail, M., et al. (2017). Integrity inspection of main access tunnel using ground penetrating radar. IOP Conf. Series: Materials Science and Engineering, 271, 012088. doi:10.1088/1757-899X/271/1/012088
Janiesch, C., et al. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695.
Jarzyna, J. A., et al. (2016). New methods for modeling laterolog resistivity corrections. Acta Geophysica, 64, 417-442.
Jeng, Y., et al. (2023). Algorithm Fusion for 3D Ground-Penetrating Radar Imaging with Field Examples. Remote Sensing, 15(11), 2886.
Jin, Y., & Duan, Y. (2020). Wavelet Scattering Network-Based Machine Learning for Ground Penetrating Radar Imaging: Application in Pipeline Identification. Remote Sensing, 12(21). doi:10.3390/rs12213655
Jol, H. M. (2009). Ground penetrating radar theory and applications. Oxford: elsevier.
Kadioğlu, S., & Daniels, J. J. (2008). 3D visualization of integrated ground penetrating radar data and EM-61 data to determine buried objects and their characteristics. Journal of Geophysics and Engineering, 5(4), 448.
Kaminsky, A. (2010). ZondRes2D. Software for two-dimensional interpretation of DC resistivity and IP data. Zond Geophysical Software, Saint-Petersburg (Russia).
Karamizadeh, S., et al. (2014). Advantage and drawback of support vector machine functionality. Paper presented at the 2014 international conference on computer, communications, and control technology (I4CT).
Kgarume, T., et al. (2019). The use of 3D ground penetrating radar to mitigate the risk associated with falls of ground in Bushveld Complex platinum mines. Journal of the Southern African Institute of Mining and Metallurgy, 119(11), 973-982.
Kilic, G., & Eren, L. (2018). Neural network based inspection of voids and karst conduits in hydro–electric power station tunnels using GPR. Journal of Applied Geophysics, 151, 194-204. doi:10.1016/j.jappgeo.2018.02.026
Kim, J.-H., et al. (2007). Removal of ringing noise in GPR data by signal processing. Geosciences Journal, 11(1), 75-81. doi:10.1007/BF02910382
Kofman, L., et al. (2006). Detection of model voids by identifying reverberation phenomena in GPR records. Journal of Applied Geophysics, 59(4), 284-299.
Kong, S., et al. (2023). Integrating Deep Learning and Deterministic Inversion for Enhancing Fault Detection in Electrical Resistivity Surveys. Applied Sciences, 13(10), 6250.
Kotyrba, A., & Mutke, G. (2015). Impact of deep mining on shallow voids stability and sinkhole hazard. Paper presented at the AIMS 2015–-fith int. Symp.: Mineral resources and mine development.
Kozlowski, A. (2023). Ground Penetrating Radar. Retrieved from https://www.nysm.nysed.gov/research-collections/geology/research/ground-penetrating-radar#:~:text=Originally%20GPR%20developed%20for%20measuring,affordable%20in%20the%20mid%201980s.
Krahn, J., & Fredlund, D. G. (1972). On Total, Matric and Osmotic Suction. Soil Science, 114(5), 339-348. doi:10.1097/00010694-197211000-00003
Lai, W. W., et al. (2017). Detection and imaging of city′s underground void by GPR. Paper presented at the 2017 9th international workshop on advanced ground penetrating radar (IWAGPR).
Lapenna, V., & Perrone, A. (2022). Time-lapse electrical resistivity tomography (TL-ERT) for landslide monitoring: Recent advances and future directions. Applied Sciences, 12(3), 1425.
Lech, M., et al. (2020). Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems. Applied Sciences, 10(7). doi:10.3390/app10072263
Ledesma, R. D., et al. (2015). The Scree Test and the Number of Factors: a Dynamic Graphics Approach. Span J Psychol, 18, E11. doi:10.1017/sjp.2015.13
Ledieu, J., et al. (1986). A method of measuring soil moisture by time-domain reflectometry. Journal of Hydrology, 88(3-4), 319-328.
Lee, C. H., & Wang, T. T. (2008). Rock tunnel maintenance in Taiwan. Paper presented at the 6th Asian Young Geotechnical Engineers Conference-2008, Bangalore, India.
Li, C., et al. (2011). Layer recognition and thickness evaluation of tunnel lining based on ground penetrating radar measurements. Journal of Applied Geophysics, 73(1), 45-48. doi:10.1016/j.jappgeo.2010.11.004
Li, G., et al. (2020). Improved shift-invariant sparse coding for noise attenuation of magnetotelluric data. Earth, Planets and Space, 72(1), 1-15.
Li, J., et al. (2023). Magnetotelluric noise suppression via convolutional neural network. Geophysics, 88(1), WA361-WA375.
Liang, H., et al. (2020). Application and Algorithm of Ground-Penetrating Radar for Plant Root Detection: A Review. Sensors (Basel), 20(10). doi:10.3390/s20102836
Lippman, E. (2014). Four-Point Ligh10W Earth Resistivity Meter Ver. 4.58. Schaufling, Germany: Lipmann Geophysikalische Messgeräte.
Little, A. V., et al. (2020). Path-based spectral clustering: Guarantees, robustness to outliers, and fast algorithms. Journal of machine learning research, 21.
Liu, B., et al. (2020). Deep learning inversion of electrical resistivity data. IEEE Transactions on Geoscience and Remote Sensing, 58(8), 5715-5728.
Liu, C.-W., et al. (2002). Three-dimensional spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Environmental Geology, 43(1-2), 48-56. doi:10.1007/s00254-002-0648-2
Liu, H.-J., et al. (2018). Model Construction and Application of Taichung Water Resources System. [台中水資源開發模式建立與應用]. Taiwan Association of Hydraulic Engineer, 6, 111-127.
Liu, S., et al. (2007). FDTD simulations for ground penetrating radar in urban applications. Journal of Geophysics and Engineering, 4(3), 262-267. doi:10.1088/1742-2132/4/3/s04
Liu, W., et al. (2021). Two-dimensional deep learning inversion of magnetotelluric sounding data. Journal of Geophysics and Engineering, 18(5), 627-641.
Loke, M., & Barker, R. (1996). Practical techniques for 3D resistivity surveys and data inversion1. Geophysical Prospecting, 44(3), 499-523.
Loke, M. H. (1999). Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys(4 ed.).
Loke, M. H. (2022). RES2DINV ver. 3.59, Rapid 2-D Resistivity & IP inversion using the least-squares method Penang: Geotomo software.
Loke, M. H., & Barker, R. D. (1996). Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1. Geophysical Prospecting, 44(1), 131-152.
Loke, M. H., et al. (2020). Electrical resistivity surveys and data interpretation. In Encyclopedia of solid earth geophysics (pp. 1-6): Springer.
Lorena, A. C., et al. (2011). Comparing machine learning classifiers in potential distribution modelling. Expert Systems with Applications, 38(5), 5268-5275.
Lu, C.-Y., et al. (2020). The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sensing, 12(20). doi:10.3390/rs12203315
Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140-147.
Meng, X., et al. (2019). Ground-penetrating radar measurements of subsurface structures of lacustrine sediments in the Qaidam Basin (NW China): Possible implications for future in-situ radar experiments on Mars. Icarus, 338, 113576. doi:10.1016/j.icarus.2019.113576
Mohamed, A. E. (2017). Comparative study of four supervised machine learning techniques for classification. International Journal of Applied, 7(2), 1-15.
Morrow, C. (2020). Normalization Techniques in Python Using NumPy. Normalizing datasets with Python and NumPy for analysis and modeling. Retrieved from https://towardsdatascience.com/normalization-techniques-in-python-using-numpy-b998aa81d754
Mukhwathi, U., & Fourie, F. (2020). The influence of angled survey lines on 2D ERT surveys using the Wenner (α) array with implications for groundwater exploration in Karoo rocks. Journal of African Earth Sciences, 168, 103875.
Neal, A. (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3-4), 261-330. doi:10.1016/j.earscirev.2004.01.004
Nielsen, F. (2016). Introduction to HPC with MPI for Data Science: Springer.
Nielson, T., et al. (2021). Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography. Catena, 207, 105553.
Nobes, D. C. (1999). Geophysical surveys of burial sites: a case study of the Oaro urupa. Geophysics, 64(2), 357-367. doi:10.1190/1.1444540
Ogawa, H., et al. (2023). A novel method for processing noisy magnetotelluric data based on independence of signal sources and continuity of response functions. Journal of Applied Geophysics, 213, 105012.
Olhoeft, G. R. (2000). Maximizing the information return from ground penetrating radar. Journal of Applied Geophysics, 43(2-4), 175-187. doi:S0926-9851 99 00057-9
Olivier, K. K. J., et al. (2022). Elaboration of a hydrogeological conceptual model by application of electrical resistivity tomography: Case of the Lobo catchment (Centre-Western Côte d′Ivoire). Scientific African, 16. doi:10.1016/j.sciaf.2022.e01234
Omini, E. O., & Akpang, O. M. (2018). Cavity detection under re-enforced concrete floor using ground penetration radar. Engineering Heritage Journal, 2(2), 11-18.
Osinowo, O. O., & Falufosi, M. O. (2019). 3D Electrical Resistivity Imaging (ERI) for subsurface evaluation in pre-engineering construction site investigation. NRIAG Journal of Astronomy and Geophysics, 7(2), 309-317. doi:10.1016/j.nrjag.2018.07.001
Ozkaya, U., et al. (2020). GPR B scan image analysis with deep learning methods. Measurement, 165. doi:10.1016/j.measurement.2020.107770
Parkinson, G., & Ékes, C. (2008). Ground penetrating radar evaluation of concrete tunnel linings. Paper presented at the 12th international conference on ground penetrating radar, Birmingham, UK.
Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462.
Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.
Puntu, J. M. (2019). Using Electrical Resistivity Imaging Method to Estimate the Water Table and the Specific Yield of the Unconfined Aquifer: A Case Study along the Wuxi River in the Taichung-Nantou Basin, Central Taiwan. (Master). National Central University, Zhongli.
Puntu, J. M., et al. (2023). Groundwater monitoring and specific yield estimation using time-lapse electrical resistivity imaging and machine learning. Frontiers in Environmental Science.
Puntu, J. M., et al. (2021). A Comprehensive Evaluation for the Tunnel Conditions with Ground Penetrating Radar Measurements. Remote Sensing, 13(21), 4250. doi:10.3390/rs13214250
Puntu, J. M., et al. (2023). Assessment of Potential Artificial Recharge Area Using 3D Geological Model Based on Multi-Geoelectrical Data and Machine Learning Approach. Paper presented at the 5th Asia Pacific Meeting on Near Surface Geoscience & Engineering.
Rabbath, C. A., & Corriveau, D. (2019). A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics. Defence Technology, 15(5), 741-757. doi:10.1016/j.dt.2019.07.016
Rabeau, O., et al. (2010). Gold potential of a hidden Archean fault zone: the case of the Cadillac–Larder Lake Fault. Exploration and Mining Geology, 19(3-4), 99-116.
Ramsahoye, L., & Lang, S. M. (1961). A simple method for determining specific yield from pumping tests: US Government Printing Office.
Rehman, F., et al. (2016). Estimation of dielectric permittivity, water content, and porosity for environmental engineering and hydrogeological studies using ground penetrating radar, a short review. Arabian Journal of Geosciences, 9, 1-7.
Reynolds, J. M. (2011). An introduction to applied and environmental geophysics (Second Edition ed.). Chichester: John Wiley & Sons.
Rohatgi, A. (2021). WebPlotDigitizer (Version 4.5). Pacifica, California, USA. Retrieved from https://automeris.io/WebPlotDigitizer
Rücker, C., et al. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers & Geosciences, 109, 106-123.
Salem, N., & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292-299. doi:10.1016/j.procs.2019.12.111
Salih, S. A. (2007). Application of Ground Penetrating Radar (GPR) in Detection of Behavior of Groundwater Table Near Pumping Well. Tikrit Journal of Pure Science, 12(1).
Salih, S. A., et al. (2022). Detection of Groundwater Table by Using Ground Penetrating Radar in Two Selected Sites/Northern Iraq. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229.
Sandmeier, K. J. (2019). Reflexw version 9.0: windows XP/7/8/10-program for the processing of seismic, acoustic or electromagnetic, reflection, refraction and transmission data. Karlsruhe, Germany.
Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34-38.
Shao, P., et al. (2021). Integration of ERT, IP and SP methods in hard rock engineering. Applied Sciences, 11(22), 10752.
Sharlov, M. V. (2015). FastSnap Digital Electroprospecting System Version 3.0. Rusia: Sigma LLC.
Sharma, S., & Verma, G. K. (2015). Inversion of Electrical Resistivity Data: A Review International Journal of Computer and Systems Engineering, 9(4), 400-406. doi:10.5281/zenodo.1106169
Shyu, J. B. H. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110(B8). doi:10.1029/2004jb003251
Singh, A., et al. (2016). A review of supervised machine learning algorithms. Paper presented at the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).
Sotomayor, L. N., et al. (2023). Supervised machine learning for predicting and interpreting dynamic drivers of plantation forest productivity in northern Tasmania, Australia. Computers and Electronics in Agriculture, 209. doi:10.1016/j.compag.2023.107804
Steelman, C. M., & Endres, A. L. (2011). Comparison of petrophysical relationships for soil moisture estimation using GPR ground waves. Vadose Zone Journal, 10(1), 270-285.
Stephens, D. B. (2018). Vadose zone hydrology. Boca Raton: CRC press.
Strzałkowski, P. (2019). Sinkhole formation hazard assessment. Environmental Earth Sciences, 78(1), 9.
Sullivan, B., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37). doi:10.21105/joss.01450
Taylor, C. J., & Alley, W. M. (2001). Ground-water-level monitoring and the importance of long-term water-level data (Vol. 1217): US Geological Survey Denver, CO, USA.
Telford, W. M., et al. (2001). Applied Geophysics Second Edition (2 ed.). Cambridge: Cambridge University Press.
Texas Department of Transportation. (2010). Using GroundCoupled Radar Techniques to Detect Concealed Subsurface Voids. Construction and Bridge Divisions.
Thitimakorn, T., et al. (2016). Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand. International Journal of Geo-Engineering, 7, 1-9.
Tong, L.-T. (1993). Application of Ground Penetrating Radar to Locate Underground Pipes. Terr. Atmos. Ocean. Sci., 4, 171-178. doi:10.3319/TAO.1993.4.2.171(T)
Topp, G. C., et al. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16(3), 574-582.
TRA. (2015). Retrieved from Taiwan Railways Administration
: https://www.railway.gov.tw/en/
Tsai, J. P., et al. (2019). Constructing the apparent geological model by fusing surface resistivity survey and borehole records. Groundwater, 57(4), 590-601.
Ulugergerli, E. U. (2011). Two dimensional combined inversion of short-and long-normal dc resistivity well log data. Journal of Applied Geophysics, 73(2), 130-138.
Utsi, E. C. (2017). Ground penetrating radar: theory and practice. Oxford: Butterworth-Heinemann.
Vakili, M., et al. (2020). Performance analysis and comparison of machine and deep learning algorithms for IoT data classification. arXiv preprint arXiv:2001.09636.
Vapnik, V. (1999). The nature of statistical learning theory: Springer science & business media.
Vasudeo, A., et al. (2009). Uses of dielectric constant reflection coefficients for determination of groundwater using ground-penetrating radar. World Applied Sciences Journal, 6(10), 1321-1325.
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17, 395-416.
Wahab, S., et al. (2021). Groundwater aquifer detection using the electrical resistivity method at Ito Campus, Kyushu University (Fukuoka, Japan). Geoscience Letters, 8(1). doi:10.1186/s40562-021-00188-6
Wang, Y. T., et al. (2019). Safety inspection and reinforcement of South-link line railway tunnels. Paper presented at the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Taipei, Taiwan.
Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845
Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021.
Water Resources Agency MOEA. (2022). Cumulative Land Subsidence in Taiwan. Retrieved from https://landsubsidence.wra.gov.tw/geoaware/page_gis.aspx
Witter, J. B., & Melosh, G. (2018). The value and limitations of 3D models for geothermal exploration. Paper presented at the 43rd Workshop on Geothermal Reservoir Engineering, no. article SGP-TR-213, 2018Standford Univeristy, Standford, California.
Xiang, L., et al. (2013). GPR evaluation of the Damaoshan highway tunnel: A case study. NDT & E International, 59, 68-76. doi:10.1016/j.ndteint.2013.05.004
Xu, S., et al. (2017). A clustering approach applied to time-lapse ERT interpretation — Case study of Lascaux cave. Journal of Applied Geophysics, 144, 115-124. doi:10.1016/j.jappgeo.2017.07.006
Yang, Y., et al. (2020). Small-scale void-size determination in reinforced concrete using GPR. Advances in Civil Engineering, 2020, 1-11.
Yen, N.-T., et al. (2020). Illustrate mud-fluid conduits and their variety using resistivity image profiling method in Southwest Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 31(5), 5.
Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. Paper presented at the Proceedings ninth IEEE international conference on computer vision.
Zan, Y., et al. (2016). An innovative vehicle-mounted GPR technique for fast and efficient monitoring of tunnel lining structural conditions. Case Studies in Nondestructive Testing and Evaluation, 6, 63-69. doi:10.1016/j.csndt.2016.10.001
Zhang, L., et al. (2022). Identification and suppression of magnetotelluric noise via a deep residual network. Minerals, 12(6), 766.
Zhang, Y., et al. (2014). Data analysis technique to leverage ground penetrating radar ballast inspection performance. IEEE Radar Conference. doi:10.1109/radar.2014.6875636
Zhou, B., & Dahlin, T. (2003). Properties and effects of measurement errors on 2D resistivity imaging surveying. Near surface geophysics, 1(3), 105-117.
Zhou, F., et al. (2018). Simultaneous Estimation of Rebar Diameter and Cover Thickness by a GPR-EMI Dual Sensor. Sensors (Basel), 18(9). doi:10.3390/s18092969
指導教授 張竝瑜(PING-YU CHANG) 審核日期 2023-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明